
WEB to cweb

WEB to cweb

Converting TEX

from WEB to cweb

Für meinen Vater

MARTIN RUCKERT Munich University of Applied Sciences

Second edition

The author has taken care in the preparation of this book, but makes no ex-

pressed or implied warranty of any kind and assumes no responsibility for

errors or omissions. No liability is assumed for incidental or consequential

damages in connection with or arising out of the use of the information or

programs contained herein.

Ruckert, Martin.
WEB to cweb
Includes index.
ISBN 1-548-58234-4

Internet page http://hint.userweb.mwn.de/hint/web2w.html may

contain current information about this book, downloadable software, and

news.

Copyright c© 2017, 2021 by Martin Ruckert

All rights reserved. Printed using kindle direct publishing. This publication

is protected by copyright, and permission must be obtained prior to any pro-

hibited reproduction, storage in a retrieval system, or transmission in any

form or by any means, electronic, mechanical, photocopying, recording, or

likewise. To obtain permission to use material from this work, please submit

a written request to Martin Ruckert, Hochschule München, Fakultät für In-

formatik und Mathematik, Lothstrasse 64, 80335 München, Germany.

ruckert@cs.hm.edu

ISBN-10: 1-548-58234-4

ISBN-13: 987-1548582340

First printing, August 2017

Second edition, August 2021

Revision: 2463, Date: Wed, 04 Aug 2021

v

Preface

This book describes a project to convert the TEX source code[3] written by Donald
E. Knuth as a “WEB”[4] into a “cweb”[6].

• On December 9, 2016, I started to implement web2w as a compiler for WEB files
which is described below. The compiler, as compilers usually do, reads an input
file and continues to produce a parse tree. The resulting parse tree has two
structures: a linear structure representing the linear order of the input file and
a tree structure representing the embedded Pascal program. Then the embedded
Pascal program needs to be translated into an equivalent C program. And finally,
the linear structure of the parse tree will be used to output a cweb file. Small
corrections on the resulting cweb file are implemented by a patch file.

The overall goal is the generation of a ctex.w file that is as close as possible
to the tex.web input file, and can be used to produce ctex.tex and ctex.c
using the standard tools ctangle and cweave.

The TEX program can then be compiled from ctex.c and the TEX documen-
tation can be generated from ctex.tex by TEX itself.

This will simplify the tool chain necessary to generate TEX from its “sources”.

• On April 20, 2017, I was able to create the first “hello world” dvi file with my
newly generated TEX program and with that, I had reached version 0.1 of web2w.

• On April 26, 2017, I succeeded for the first time to generate a program that
would pass the trip test and therefore can be called TEX. This was then version
0.2 of web2w.

While the program at this point was a “correct implementation of TEX”, its
form still needed further improvement. For example, the sizes of arrays were
computed and occurred in the source as literal numbers. It would be appropriate
for source code that instead the expression defining the array size were used to
specify the array size. The use of return statements and the elimination of
unused end labels also asked for improvement.

• On May 11, 2017, I completed version 0.3 of web2w. Numerous improvements
were added by then: some concerning the presentation of web2w itself, others with
the goal of generating better cweb code for TEX. I decided then to freeze the
improvement of the code for a while and prepare this document for publication
as a book.

• On July 27, 2017, I completed version 0.4 of web2w, the first version that will be
published as a book. More improvements (and more versions) are still to come.

vi Preface

Of course, changes in the code part of TEX will necessarily require changes
in the documentation part. These can, however, not result from an automatic
compilation. So the plan is to develop patch files that generate from the latest
0.x versions improved 1.y versions. These versions will share the same goal as
version 0.x: producing a cweb TEX source file that is as close as possible to the
original web source but with a documentation part of each section that reflects
the changes made in the code.

• There is a long term goal that brought me to construct web2w in the first place:
I plan to derive from the TEX sources a new kind of TEX that is influenced by
the means and necessities of current software and hardware. The name for this
new implementation will be HINT which is, in the usual Open Software naming
schema, the acronym for “HINT is not TEX”.

For example, HINT will accept UTF-8 input files because this is the defacto
standard due to its use on the world wide web. Further, the machine model
will be a processor that can efficiently handle 64-Bit values and has access to
large amounts of main memory (several GByte). Last not least, I assume the
availability of a good, modern C compiler and will leave optimizations to the
compiler if possible.

The major change however will be the separation of the TEX frontend: the
processing of .tex files, from the TEX backend: the rendering of paragraphs and
pages.

Let’s look, for example, at ebooks: Current ebooks are of minor typographic
quality. Just compiling TEX sources to a standard ebook format, for example
epub, does not work because a lot of information that is used by TEX to produce
good looking pages is not available in these formats. So I need to cut TEX
(or HINT) in two pieces: a frontend, that reads TEX input and a backend that
renders pixel on a page. The frontend will not know about the final page size
because the size of the output medium may change while we read—for example
by turning a mobile device from landscape to portrait mode. On the other hand,
the computational resources of the backend are usually limited because a mobile
device has a limited supply of electrical energy. So we should do as much as we
can in the frontend and postpone what needs to be postponed to the backend.
In between front and back, we need a nice new file format, that is compact and
efficient, and transports whatever information is necessary between both parts.

These are the possible next steps:
• As a first step, I will make a version of TEX that produces a file listing all

the contributions and insertions that TEX sends to the page builder. Let’s call
this a .hint file. This version of TEX will become the final frontend.

• Next, I will use a second version of TEX where I replace the reading of .tex
files by the reading of a .hint file and feed its content directly to the page
builder. This version of TEX will become the final backend. Once done, I can
test the equation TEX = HINT frontend + HINT backend.

• Next, I will replace the generation of dvi files in the backend by directly
displaying the results in a “viewer”. The “viewer” reads in a .hint file and
uses it to display one single page at an arbitrary position. Using page-up and

Preface vii

page-down buttons, the viewer can be used to navigate in the .hint file. At
that point, it should be possible to change vsize dynamically in the viewer.

• The hardest part will be the removal of hsize dependencies from the frontend
and moving them to the backend. I am still not sure how this will work out.

• Once the author of a TEX document can no longer specify the final hsize and
vsize, he or she would probably wish to be able to write conditional text for
different ranges of hsize and vsize. So if the frontend encounters such tests
it needs to include all variants in its output file.

• Last not least, most people use LATEX not plain TEX. Hence, if I want many
people to use HINT, it should be able to work with LATEX. As a first step, I
looked at ε-TEX, and my cweb version of ε-TEX already passes the extended
trip test for ε-TEX. But I am not sure what LATEX needs beside the extensions
of ε-TEX. So if someone knows, please let me know.

Enough now of these fussy ideas about the future. Let’s turn to the present
and the conversion of TEX from WEB to cweb.

San Luis Obispo, CA
June 27, 2017 Martin Ruckert

ix

Preface to the Second Edition

• It is November 11, 2020, by now and to my own surprise, most of the “fussy ideas”
presented in the previous paragraphs have become a reality. Using ctex.w,
the output of the web2w program, as the basis for the HINT project[7, 9, 10,
11] was a clear success. The success was so complete, that my initial idea of
0.x versions and improved 1.y versions turned out to be complete nonsense. As
a consequence, I will switch to a conventional numbering schema presenting in
this book version 1.0 of web2w.

There were a few changes necessary—of course. In 2019, I got a strange
compiler error, when I did ask gcc to optimize floating point math. I found out
that the include file replaced a few math functions by macros, and these macros
used the C keyword “register ”. In the TEX sources, you find the following line:

define register = 89 { internal register (\count, \dimen, etc.) }
It defines register as the number 89. Fortunately, web2w already contained code
to rename identifiers consistently, and I renamed it to internal register . Later
the year, I had to rename TEX’s macros read , write and close because they
conflict with the file handling functions in the standard C library. Other than
that, no changes were necessary until today.

While working with ctex.w, however, some shortcomings became apparent:
the constant struggle to avoid name conflicts with TEX’s macros, the cumbersome
manipulation of the string pool, and the limitation of 16-bit pointers to name
just the most important ones. Section 2 gives a detailed account of all the small
and big improvements made in version 1.0.

• It is December 31, 2020, the last day of a remarkable year. Yesterday, I finished
what I thought then would be version 1.0 of web2w. The 32-bit version as well
as the 64-bit version passed the triptest and the extended triptest with flying
colors. But today, after a good breakfast, a new idea suddenly popped up in my
mind. I had never planed to make my C version of TEX anything but the basis
of the HINT project. But during that project, I had written a change file that
incorporated the ksearchpath library into the file handling code and adopted
the command line conventions of TEX Live. Now it occurred to me that the
proper place for these extensions would be the web2w sub-project not the HINT
project proper. It could turn ctex.w into ktex.w (named in honor of Karl Berry)
creating a new TEX engine that could in fact be used not only for experiments
but also for daily use.

x Preface to the Second Edition

• On the evening of February 4, 2021, ktex compiled and run for the first time.
To polish up the last details, I started reading ctex.dvi fixing things that did
not look nice. On my way, I found that TEX is redefining \? as \relax, which
is OK for Pascal but it hides C’s “?” operator. Further there were some ugly
placements of the “case” keyword in the code. While the first issue was easy to
solve (the scanner can replace \? by \@) the second issue took me two full days.

• On March 10, 2021, I thought I finished work on version 1.0 of web2w and turned
my attention back to the HINT project, only to discover, that I would need
another feature in web2w: the generation of a suitable header file exporting
macros, constants, types, and selected variables and functions. So I added the
-h and -e command line options described in section 7.3. This kept me busy
for another week. During that time I decided to reorganize the conversion of
Pascal’s subrange types, preferring int wherever possible, and then made a final
attack on the static initialization of the string pool, to arrive at the version of
web2w that is presented in the following.

Wolfgang, March 2021 Martin Ruckert

xi

Contents

Preface v

Preface to the Second Edition ix

Contents xi

List of Figures and Tables xiii

1 Introduction 1

2 Changes to web2w in Version 1.0 7
2.1 Signed/unsigned comparison . 7
2.2 String pool initialization . 7
2.3 64 bit TEX . 9
2.4 Macro names . 10
2.5 Macro parameters . 11
2.6 “case” keyword placement . 11
2.7 Trailing spaces . 12
2.8 Constants in the outer block . 12
2.9 Miscellaneous changes . 12
2.10 TEX Live integration . 13

3 Converting WEB to cweb 15

4 Reading the WEB 17
4.1 Scanning the WEB . 17
4.2 Tokens . 18
4.3 Scanner actions . 21
4.4 Strings . 22
4.5 Identifiers . 23
4.6 Linking related tokens . 26
4.7 Module names . 28
4.8 Definitions . 31
4.9 Finishing the token list . 34

5 Parsing Pascal 37
5.1 Generating the sequence of Pascal tokens . 37
5.2 Simple cases for the parser . 39
5.3 The macros debug, gubed, and friends . 41
5.4 Parsing numerical constants . 42
5.5 Expanding module names and macros . 44
5.6 Expanding macros with parameters . 45

xii Contents

5.7 The function pp parse . 46
5.8 Pascal’s predefined symbols . 47

6 Writing the cweb 49
6.1 cweb output routines . 49
6.2 Traversing the WEB . 51
6.3 Simple cases of conversion . 52
6.4 Pascal division . 54
6.5 Identifiers . 55
6.6 Module names . 56
6.7 Strings . 57
6.8 Replacing the WEB string pool file . 57
6.9 Macro and format declarations . 59
6.10 Macro calls . 64
6.11 Labels . 65
6.12 Constant declarations . 67
6.13 Variable declarations . 67
6.14 Types . 68
6.15 Files . 72
6.16 Structured statements . 73
6.17 for-loops . 76
6.18 Semicolons . 77
6.19 Procedure definitions . 79
6.20 Procedure calls . 80
6.21 Functions . 82
6.22 The main program . 85

7 Running web2w 87
7.1 The command line . 87
7.2 Opening files . 89
7.3 Generating a header file . 89
7.4 Error handling and debugging . 92

8 The scanner 95

9 The parser 101

10 Generating TEX, Running TEX, and Passing the Trip Test 119
10.1 Generating TEX . 119
10.2 Running TEX . 120
10.3 Passing the Trip Test . 123
10.4 Generating ctex.w from tex.web . 123
References 125

Index 127

xiii

List of Figures and Tables

Figures

Fig. 1: WEB code for new null box . 2
Fig. 2: cweb code for new null box . 2
Fig. 3: The C code for new null box as generated by web2c 2
Fig. 4: The WEB code for new character . 3
Fig. 5: The cweb code for new character . 3
Fig. 6: Making the programs ctex and ktex. 14

Tables

Tab. 1: List of linked tokens . 27

1

1 Introduction

web2w, the program that follows, was not written following an established software
engineering workflow as we teach it in our software engineering classes. Instead the
development of this program was driven by an ongoing exploration of the problem
at hand where the daily dose of success or failure would determine the direction I
would go on the next day.

This description of my program development approach sounds a bit like “rapid
prototyping”. But “prototype” implies the future existence of a “final” version and
I do not intend to produce such a “final” version. Actually I have no intention to
finish the prototype either, and I might change it in the future in unpredictable
ways. I expect, however, that the speed of its further development will certainly
decrease as I move on to other problems. Instead I have documented the develop-
ment process as a literate program: the pages you are just reading. So in terms of
literature, this is not an epic novel with a carefully designed plot, but it’s more like
the diary of an explorer who sets out to travel trough yet uncharted territories.

The territory ahead of me was the program TEX written by Donald E. Knuth
using the WEB language as a literate program. As such, it contains snippets of code
in the programming language Pascal—Pascal-H to be precise. Pascal-H is Charles
Hedrick’s modification of a compiler for the DECsystem-10 that was originally
developed at the University of Hamburg (cf. [1] see [3]). So I could not expect to
find a pure “Standard Pascal”. But then, the implementation of TEX deliberately
does not use the full set of features that the language Pascal has to offer in order
to make it easier to run TEX on a large variety of machines. At the beginning, it
was unclear to me what problems I would encounter with the subset of Pascal that
is actually used in TEX.

Further, the problem was not the translation of Pascal to C. A program that
does this is available in the TEX Live project: web2c[12] translates the Pascal code
that is produced using tangle from tex.web into C code. The C code that is
generated this way can, however, not be regarded as human readable source code.
The following example might illustrate this: Figure 1 shows the WEB code for the
function new null box . The result of translating it to C by web2c can be seen in
figure 3. In contrast, figure 2 shows what web2w will achieve.

It can be seen, that web2c has desugared the sweet code written by Knuth to
make it unpalatable to human beings, the only use you can make of it is feeding it
to a C compiler. In contrast, web2w tries to create source code that is as close to
the original as possible but still translates Pascal to C. For example, note the last
statement in the new null box function: where C has a return statement, Pascal

2 1 Introduction

136. The new null box function re-
turns a pointer to an hlist node in which
all subfields have the values correspond-
ing to ‘\hbox{}’. The subtype field is set
to min quarterword , since that’s the de-
sired span count value if this hlist node

is changed to an unset node .

function new null box : pointer ;
{ creates a new box node }

var p: pointer ; { the new node }
begin p← get node (box node size);
type (p)← hlist node ;
subtype (p)← min quarterword ;
width (p)← 0; depth (p)← 0;
height (p)← 0; shift amount (p)← 0;
list ptr (p)← null ;
glue sign (p)← normal ;
glue order (p)← normal ;
set glue ratio zero(glue set (p));
new null box ← p;
end;

Fig. 1: WEB code for new null box

136. The new null box function re-
turns a pointer to an hlist node in which
all subfields have the values correspond-
ing to ‘\hbox{}’. The subtype field is set
to min quarterword , since that’s the de-
sired span count value if this hlist node

is changed to an unset node .

pointer new null box (void)
/∗ creates a new box node ∗/

{ pointer p; /∗ the new node ∗/

p = get node (box node size);
type (p) = hlist node ;
subtype (p) = min quarterword ;
width (p) = 0; depth (p) = 0;
height (p) = 0; shift amount (p) = 0;
list ptr (p) = null ;
glue sign (p) = normal ;
glue order (p) = normal ;
set glue ratio zero(glue set (p));
return p;

}

Fig. 2: cweb code for new null box

halfword

newnullbox (void)

{

register halfword Result; newnullbox_regmem

halfword p ;

p = getnode (7) ;

mem [p].hh.b0 = 0 ;

mem [p].hh.b1 = 0 ;

mem [p + 1].cint = 0 ;

mem [p + 2].cint = 0 ;

mem [p + 3].cint = 0 ;

mem [p + 4].cint = 0 ;

mem [p + 5].hh .v.RH = -268435455L ;

mem [p + 5].hh.b0 = 0 ;

mem [p + 5].hh.b1 = 0 ;

mem [p + 6].gr = 0.0 ;

Result = p ;

return Result ;

}

Fig. 3: The C code for new null box as generated by web2c

1 Introduction 3

assigns the return value to the function name. A simple translation, sufficient for
a C compiler, can just replace the function name by “Result” (an identifier that is
not used in the implementation of TEX) and add “return Result;” at the end of
the function (see figure 3). A translation that strives to produce nice code should,
however, avoid such ugly code.

Let’s look at another example:

function new character (f : internal font number ; c : eight bits): pointer ;
label exit ;
var p: pointer ; { newly allocated node }
begin if font bc [f] ≤ c then

if font ec [f] ≥ c then

if char exists (char info(f)(qi (c))) then

begin p← get avail ; font (p)← f ; character (p)← qi (c);
new character ← p; return;
end;

char warning (f, c); new character ← null ;
exit : end;

Fig. 4: The WEB code for new character

pointer new character (internal font number f, eight bits c)
{ pointer p; /∗ newly allocated node ∗/

if (font bc [f] ≤ c)
if (font ec [f] ≥ c)

if (char exists (char info(f)(qi (c)))) { p = get avail (); font (p) = f ;
character (p) = qi (c); return p;

}
char warning (f, c); return null ;

}

Fig. 5: The cweb code for new character

In figure 4 there is a “return” in the innermost if . This “return” is actually
a macro defined as “goto exit”, and “exit” is a numeric macro defined as “10”.
“return” is a reserved word in C and “exit” is a function of the C standard library,
so something has to be done. The example also illustrates the point that I can not
always replace an assignment to the function name by a C return statement. Only
if the assignment is in a tail position, that is a position where the control-flow leads
directly to the end of the function body, it can be turned into a return statement
as happened in figure 5. Further, if all the goto statements that lead to a given
label have been eliminated, as it is the case here, the label can be eliminated as
well. In figure 5 there is no “exit :” preceding the final “}”.

Another seemingly small problem is the different use of semicolons in C and
Pascal. While in C a semicolon follows an expression to make it into a statement,
in Pascal the semicolon connects two statements into a statement sequence. For

4 1 Introduction

example, if an assignment precedes an “else”, in Pascal you have “x:=0 else”
where as in C you have “x=0; else”; no additional semicolon is needed if a
compound statement precedes the “else”. When converting tex.web, a total of
1119 semicolons need to be inserted at the right places. Speaking of the right place:
Consider the following WEB code:

define inf bad = 10000 { infinitely bad value }
...

if r > 1290 then badness ← inf bad { 12903
< 231

< 12913 }
else badness ← (r ∗ r ∗ r + 4́00000) div 1́000000 ;

Where should the semicolon go? Directly preceding the “else”? Probably not!
Alternatively, I can start the search for the right place to insert the semicolon
with the assignment. But this does not work either: the assignment can be spread
over several macros or modules which can be used multiple times. Here it would
lead to a semicolon inserted after 10000 in the inf bad macro. So the right place
to insert a semicolon in one instance can be the wrong place in another instance.
web2w converts Pascal’s assignment to badness , the function name, into a return
statement and places the semicolon correctly behind the macro invocation like this:

#define inf bad 10000 /∗ infinitely bad value ∗/
...

if (r > 1290) return inf bad ; /∗ 12903 < 231 < 12913
∗/

else return (r ∗ r ∗ r + ◦400000)/◦1000000 ;

A mayor difference between Pascal and C is the use of subrange types. Subrange
types are used to specify the range of valid indices when defining arrays. While
most arrays used in TEX start with index zero, not all do. In the first case, they
can be implemented as C arrays which always start at index zero; in the latter
case, I define a zero based array having the right size, adding a “0” to the name.
Then, I define a constant pointer initialized by the address of the zero based array
plus/minus a suitable offset so that I can use this pointer as a replacement for the
Pascal array.

When subrange types are used to define variables, I replace subrange types by
the next largest C standard integer type as defined in stdint.h which works most
of the time. Consider the code

var p: 0 . . nest size ; { index into nest }
...

for p← nest ptr downto 0 do

where nest size = 40. Translating this to

uint8 t p; /∗ index into nest ∗/

...

for (p = nest ptr ; p ≥ 0; p−−)

1 Introduction 5

would result in an infinite loop because p would never become less than zero; instead
it would wrap around. So in this (and 21 similar cases), I declare the variables used
in for-loops to be of type int.

I will not go into further details of the translation process as you will find all the
information in what follows below. Instead, I will take a step back now and give
you the big picture, looking back at the journey that took me to this point.

The program web2w works in three phases: First I run the input file tex.web
through a scanner producing tokens (see section 8). The pattern matching is done
using flex, the action code consists of macros described here. The tokens form a
doubly linked list, so that later I can traverse the source file forward and backward.
During scanning, information is gathered and stored about macros, identifiers,
and modules. In addition, every token has a link field which is used to connect
related tokens. For example, I link an opening parenthesis to the matching closing
parenthesis, and the start of a comment to the end of the comment.

After scanning comes parsing. The parser is generated using bison from a
modified Pascal grammar (see section 9). To run the parser, I need to feed it with
tokens, rearranged in the order that tangle would produce, expanding macros and
modules as I go. While parsing, I gather information about the Pascal code. At
the beginning, I tended to use this information immediately to rearrange the token
sequence just parsed. Later, I learned the hard way (modules that were modified on
the first encounter would later be feed to the parser in the modified form) that it is
better to leave the token sequence untouched and just annotate it with information
needed to transform it during the next stage. A technique that proved to be very
useful is connecting the key tokens of a Pascal structure using the link field. For
example, connecting a “case” token with its “do” token makes it easy to place
the expression that is between these tokens, without knowing anything about its
actual structure, between “ switch (” and “)”. The final stage is the generation
of cweb output. Here the token sequence is traversed a third time, this time again
in input file order. This time, the traversal will stop at the warning signs put up
during the first two passes, use the information gathered so far, and rewrite the
token sequence as gentle and respectful as possible from Pascal to C.

Et voilà! tex.w is ready—almost at least. I apply a last patch file, for instance
to adapt documentation reliant on webmac.tex so that it works with cwebmac.tex,
or I make small changes that do not deserve a more general treatment. The final
file is then called ctex.w from which I obtain ctex.c and ctex.tex simply by
applying ctangle and cweave. Using “gcc ctex.c -o ctex” I get a running
ctex. Running “ctex ctex.tex” to get ctex.dvi is then just a tiny step away:
it is necessary to set up format and font metric files. The details on how to do that
and run (and pass) the infamous trip test are described in section 10.

7

2 Changes to web2w in Version 1.0
First of all, we now have a version number:
〈 web2w version 1 〉 ≡ (1)

"1.0"

The other changes can be roughly divided into three categories: semantic changes,
cosmetic changes, and structural changes. I start with the semantic changes: the
changes that affect the semantics of the program produced by web2w. Then I
explain the cosmetic changes that cause web2w to produce nicer looking output,
and finally I introduce the structural changes that are motivated mainly by the
goal to integrate the produced program into the TEX Live distribution.

2.1 Signed/unsigned comparison

In Pascal, comparing of two integer expressions will always return a correct value,
because Pascal maps both operands onto a common ordinal type, “large enough”
for both operands, before comparing them. This is different in C, where com-
paring a signed and an unsigned quantity might not produce the expected out-
come. With the right warnings enabled, a C compiler will emit complaints about
signed/unsigned comparisons. Even more complaints are caused by quite a few
of TEX’s functions that use integer as the type of its parameters, while the ac-
tual argument is a pointer or a str number, leading to unnecessary comparisons
between signed and unsigned data types.

Version 0.4 used to replace the PCOLON token preceding the type in a variable
declaration either by a CIGNORE token or by a CTSUBRANGE token to mark
subrange types. Version 1.0 introduces two new token types: CTINT replaces
CTSUBRANGE for global and local variables of ordinal type but not for record fields,
arrays, type definitions, and named types; and CTLOCAL replaces CIGNORE for
local variables of a named ordinal type. Marked variable types are systematically
replaced by int. This converts most unstructured variables that belong in Pascal

to an enumeration or subrange type to int variables. This is in line with Pascal’s
concept of the “host type” of such a type.

2.2 String pool initialization

Another spot that needed further attention is TEX’s string pool. Strings enclosed
in C-like double quotes receive a special treatment by tangle: the strings are
collected in a string pool file and replaced by string numbers in the Pascal source.
No such mechanism is available in ctangle. Version 0.4 of web2w replaces literal
strings by section names which then expand to an index in the str start array.

8 2.2 Changes to web2w in Version 1.0

Together with a suitable static initialization of the str start and str pool array,
this had the desired effect and it was quite readable. For a subset of these literal
strings, web2w took extra action to keep them in the code as literal C strings. This
had the advantage that these strings were easier to change when modifying the
generated .w or .c files.

When implementing the HINT viewer, it turned out that TEX’s entire string pool
was still necessary to compile it; the code inherited from TEX still contained a few
references to the string pool. This seems unnecessary because the HINT viewer
does not deal with TEX’s control sequences or string handling functions. When
implementing version 1.0 of web2w, I started to reduce the amount of strings that
enter the string pool further, until only the names of control sequences remained in
the string pool. With these names also the first argument of the function primitive
remained a string number.

Defining new TEX primitives in change files is, however, common for typical
extensions of TEX. With ctex.w this has proved to be a bit cumbersome. You can
not just write primitive (〈 "newname" 〉, . . .); but you need to define the section name
such that it expands to a str start . . . macro which you need to define depending on
the initialization of the str start array which in turn depends on the initialization
of the str pool array. A cumbersome and error prone process.

So in the end, I decided to eliminate the static initialization of the string pool
entirely. In version 1.0 the string pool is initialized at runtime with the first
256 single character strings and the empty string. Most other strings are added
in the INI version by the primitive function. The advantage is simplicity and
readability; the disadvantage is the overhead in time and space because names of
control sequences will now exist twice: the static string that is the argument of the
primitive function and its copy in the string pool.

Here is some data on the incurred overhead to justify the decision: Version 0.4
already reduced the initial number of strings in the string pool from 1044 to 730
and the initial size of the string pool from 22742 byte to 4700 byte. Further re-
ductions in version 1.0 left 611 strings with a total of 3701 byte in the string pool
but still without simplifying the addition of new primitive control sequences. The
next logical step was abandoning the static initialization of the string pool alto-
gether. Two alternatives came to my mind: removing the string pool completely
or switching to a dynamic initialization of the string pool. I decided for the second
alternative for the following reasons:
• While dynamic initialization adds an overhead in space and time because the

strings are present as C string literals and are copied at runtime to the string
pool, the space overhead is small (about 1% of the executable’s size) and the
time overhead is incurred only in the INITEX version of TEX.

• It makes addition of new string literals as simple as possible.
• It simplifies the implementation of web2w.
• It avoids unnecessary changes to Donald Knuth’s data structures and algorithms.

As a side effect of this transformation, the TEX area and TEX font area macros
of TEX now were defined as ordinary C strings and the time was ripe to change
"TeXinputs:" to "TeXinputs/" and "TeXfonts:" to "TeXfonts/".

2.3 64 bit TEX 9

Keeping the WEB strings as C string literals in the code and keeping the string pool
as well implied changing variable types from str number to char ∗ in numerous
but not all places. I used an heuristic approach to decide whether to convert or not.
I count assignments of string literals and string numbers to variables and function
parameters and converted them if the literal strings had the majority. For the
most common string functions print and print esc , I converted the calls to printn
and printn esc in case the argument was still a string number. All the remaining
inconsistencies are resolved in the final ctex.patch file.

2.3 64 bit TEX

The biggest problem with the version 0.4 ctex.w was the limitation to a 16-bit
pointer type which allows access to at most 216 of TEX’s memory words. To run a
typical LATEX job, loading only a few of the most common packages, this is usually
not sufficient. And for most people, TEX is just a synonym for LATEX. Yes, quite a
few of them do not even know that LATEX is not the only way of using TEX. Hence,
an implementation of TEX that is restricted to 16-bit pointers is a nice research
project but it is not suitable for processing typical LATEX workloads. The solution
is to investigate the move to 32-bit pointer types, pointing to 64-bit memory
words. I expected this should be feasible without creating too many complications,
because I remember having seen in the 70’s a TEX implementation using 48-bit
words. So the Pascal code with all its enumeration types should adjust gracefully
to a larger range for the pointer type.

I started by finding out how big TEX’s data structures are in common implemen-
tations of TEX by looking at the code of pdfTEX in the TEX Live 2019 distribution
that is currently installed on my computer. There are default values for TEX’s con-
stants that govern these sizes in texini.c and the dynamic values, determined by
configuration files, can be found by calling kpsewhich -var-value variable-name.

Here are my findings:

Constant Default Dynamic Original
mem bot 0 0
main memory 250 000 5 000 000 30 000
pool size 200 000 6 250 000 32 000
pool free 5 000 47 500
string vacancies 75 000 90 000 8 000
max strings 15 000 500 000 3 000
strings free 100
font mem size 100 000 8 000 000 20 000
font max 500 9 000 75
trie size 20 000 1 000 000 8 000
trie op size 35 111 500
hyph size 659 8 191 307
buf size 3 000 200 000 500
nest size 50 500 40
max in open 15 15 6
param size 60 10 000 60

10 2.4 Changes to web2w in Version 1.0

save size 4 000 100 000 600
stack size 300 5 000 200
dvi buf size 16 384 16 384 800
error line 79 79 72
half error line 50 50 42
max print line 79 79 79
hash extra 24 526 600 000
hash size 15 000 2 100
hash prime 8 501 1 777
max halfword #FFF FFFF #FFFF
max quarterword #FF #FF

TEX’s mem array extends from index mem min to mem max and TEX Live sets
mem top = mem bot +main memory −1, mem min = mem bot , and mem max =
mem top . hash extra becomes the size of the hash table between hash offset and
hash top ; so I might need to increase the hash size by this additional amount.
pool free and strings free specify the amount of free space required in the string
pool and the string start array after undumping a format file.

I choose file name size ≡ 1024.
Another important choice is the value for max halfword . TEX tests if (2 ∗

max halfword < mem top − mem min) bad = 41; so 2 ∗ max halfword must
not produce an overflow. Choosing max halfword ≡ #3FFF FFFF satisfies this
condition.

Allocating bigger arrays is not the problem. The problem is the storage space
needed for the array indices. So, for example, the main memory is accessed using
variables of type pointer. Pointers are stored in a halfword which in version 0.4 is
a uint16 t and two halfwords must fit in a memory word . These data structures
must be redefined. It was unclear how the packing and unpacking of memory words
would be affected by the changes in the structure of these data types.

Well—after changing the constants mentioned above, web2w did run without
complaints, the patch file needed some changes to adapt to the new data structures,
replacing a uint8 t by a uint16 t at one place and a uint16 t by a uint32 t
at another place, until at the end, to my own surprise, the GNU C compiler would
again compile ctex.c without further errors or warnings.

2.4 Macro names

Avoiding name conflicts with the long list of macros defined by TEX was a constant
concern when working on the HINT project where TEX code was used as part of
a larger software project. In the C language, there is no separate name space for
macros. Because the preprocessor expands macros before scanner and parser get
to see the source file, macro names defined inside a source file have something like
a “super-file-scope”. Their visibility is limited to the file, but even names of local
variables or field names inside a structure are not protected against expansion.
Macro names defined inside a header file must be considered “super-global”; they
cause—often unexpected—expansions everywhere. Since TEX code relies heavily
on macro expansion, it is not possible to use any part of it without including a

2.6 “case” keyword placement 11

header file with many—if not all—macro definitions of TEX. While this created
numerous problems, it was possible but not convenient to work around them.

When using the C language, it is common practice to avoid conflicts between
macros and variable, function, or field names by making macros use all upper
case names where as ordinary names use at least some lower case letters. So the
obvious idea is to implement a command line option for web2w that makes macro
names use upper case letters. Since TEX targets a Pascal compiler and Pascal

programs are not case sensitive, it is possible to do this without creating new
name conflicts. Changing all macro names to upper case will, however, impact the
visual appearance of the TEX program considerably. Therefore this replacement is
optional. You might even create the documentation using lower case macros and
the running program using upper case macros.

2.5 Macro parameters
The WEB system allows the definition of parametrized macros using a single # sign
to mark the insertion point(s) for the parameter text. This does not prevent you
from passing multiple parameters because commas are allowed in the parameter
text. Already in version 0.4 this had to be taken into account because the C

preprocessor interprets commas in the parameter text as a separator between
multiple parameters and insists that macro definition and macro use agree on the
number of parameters. The solution was counting the arguments when a macro was
used and inserting the necessary number of macro parameters when writing out
the macro definition. In a few cases where the number of parameters would vary,
variadic macros were defined using the ctex.patch file. The implementation of
WEB macros however implies one restriction: at every insertion point the complete
parameter text—with all its commas—is inserted. It is not possible to insert only
a single comma separated component. To overcome this restriction, TEX resorts
to “tail calls” in it macro definitions. As an example consider the definition of
char info as shown in section 6.9. Version 1.0 now implements the unrolling of the
tail calls and produces truly C style macro definitions.

2.6 “case” keyword placement
One of the most difficult problems when converting Pascal to C is the correct
placement of the case keyword when converting Pascal’s case . . . of statement to
C’s switch statement. Most problems were solved in version 0.4 by passing TEX’s
numeric macros directly to the parser without expanding them. Unfortunately,
ε-TEX introduced some ordinary macros that expanded to plain integers and used
them as case labels—with ugly cweb code as a result. To remedy the situation,
version 1.0 now includes a postprocessing step to convert ordinary macros to
numeric macros if possible.

It was even more difficult to get the placement of the case keyword “correct”,
when the label was a macro parameter. The solution is described in section 6.16
and requires checking the sequence number and the nesting level of expansions.

While solving the problem, I added links from closing braces to opening braces
allowing for a faster scan backwards over Pascal comments. A technique which
probably can be useful in other places as well.

12 2.7 Changes to web2w in Version 1.0

2.7 Trailing spaces
Version 0.4 of web2w occasionally generated lines that ended with a space or tab
character. Igor Liferenko pointed me to this problem which is a nuisance when
creating change files. To eliminate these trailing spaces, a new counter was added
to count spaces instead of writing them to the output. Using this counter, the
primitive wput operation will postpone the output of spaces until a non-space
character needs to be written. Further, it led me to using a space instead of a
tab character between macro name and macro definition. This is also consistent
with tex.web where no attempt is made to align the right hand sides of macro
definitions. In the process of implementing these changes, the basic output routines
in section 6.1 were reorganized.

2.8 Constants in the outer block
I never liked the way version 0.4 handled the 〈Constants in the outer block 〉:
creating a separate enumeration type for each constant. The new version will now
generate a single enumeration type for all 〈Constants in the outer block 〉. The
biggest problem, which led me to the old implementation, is the final constant in
this list: the pool name . In the WEB implementation it’s an integer constant (a
string number) in the cweb implementation it became a literal string which can
not be part of a C enumeration type. The first attempt at improving the situation
was inserting the “enum {” before the first constant declaration and to place the
closing “} ;” of the enumeration after the last such declaration. It needed the help
of the parser to identify the first and the last declaration, and scanning backward
from the last declaration (the constant string), skipping all non-Pascal tokens until
arriving at the proper place to insert the closing “} ;”. It worked quite well, but
I realized later that pool name is no longer used because there is no string pool
file any more. This led to the much nicer implementation: using Pascal’s const
keyword as a hook to insert the “enum { . . . } ;”, and eliminating pool name using
the final patch file.

2.9 Miscellaneous changes
When I thought I would be done, I started to read cweb.dvi from start to finish
and discovered a whole series of necessary or at least desirable improvements.

For example, I eliminated the definition of done6 , which was never used, by
marking it as obsolete. Then I generalized the concept introducing two new
counters scan count and use count counting all the occurrences of an identifier
(except for macro and format definitions) and all usages of an identifier. Based on
this, I eliminated all definitions of macros that were never used—except for a few
of them, like top skip or toks , keeping them for documentation purposes. While
at it, I ended the (mis)use of the value field in the symbol table for counting the
goto’s by introducing a new field named goto count .

At other places, I started to rename variables for greater consistency. Now I
consistently use the ww_ prefix for variables and functions in the scanner, and pp_
for the parser; string numbers get the suffix _no; and underscores are used to
structure variable names. Then I stumbled over a code sequence which seemed
to make no sense—until I discovered that the question mark operator of C was

2.10 TEX Live integration 13

missing. It turned out that TEX was redefining \? as \relax (which is OK for
Pascal code). A small change in the scanner now replaces \? by \@. Another
change replaces \AT! (defined in webmac.tex) by \AT (defined in cwebmac.tex).
On other occasions, I simply used the patch file to fix TEX code that just didn’t
look right.

I also made an attempt at rewriting TEX’s help system having only a single help
macro for any number of lines. Based on the fact that a C compiler concatenates
adjacent strings, all lines were rewritten to include a trailing newline and the help
macro would just assign the string to the help ptr . The code grew complex and it
required quite a few patches to cope with all the nasty things that TEX and ε-TEX do
with the help line array. Since it neither improved readability, nor performance,
and neither maintainability, but just adds complexity, I removed it again after
working on it for two full days. I had more luck with the removal of the tail calls
in parametrized macros. This job was accomplished without too much headache
in less than a day.

2.10 TEX Live integration

The new TEX engine that is generated using web2w aspires to become a member of
the TEX Live family of programs. To reach this goal, four major accomplishments
are necessary:
The new TEX engine must
• fit in with the TEX Live build process,
• respect the TEX Live conventions for command line parameters,
• find its input files using the kpathsearch library, and
• implement TEX primitives to support LATEX.

To simplify the build process, I introduced further changes to web2w. Name
conflicts when linking TEX with external libraries are avoided by declaring all
functions (except main) and global variables as static. I also needed a convenient
method to include additional header files. Header files need to go before defining
TEX’s macros, because very often macro names (e.g. link , name , time , . . .) conflict
with identifiers used in standard header files. Therefore, I renamed 〈Compiler
directives 〉 to 〈Header files and function declarations 〉 and made it the first section
of the program. After that, I included the macro definitions using @h, followed by
constants, types, global variables, and functions.

To arm the new TEX engine with the necessary extended functionality for LATEX,
it is based on ε-TEX; and to supply it with sufficient resources to cope with large
LATEX packages, it is based on the 64-bit version of ctex. But ectex64.w, the
extended 64-bit version of TEX, is still not enough. A final change file ktex.ch is
necessary to produce ktex.w. Figure 6 illustrates the complete build process.

To read the complete documentation of these changes run “cweave ectex64.w
ktex.ch ktex.tex”, then run “ktex ktex.tex” and read ktex.dvi.

ectex64.w

ktex.w

ktex.c

ktex.ch

ctangle

ktex

gcc

ctex.patch

etex64.w

ectex.patch

etex64.web

web2w

etex.web

tex64.patch

ctex.w

ctex.c

ctangle

ctex

gcc

ctex.patch

tex.w

web2w

tex.web
etex.ch

Fig. 6: Making the programs ctex and ktex.

15

3 Converting WEB to cweb

web2w is implemented by a C code file:
#include <stdlib.h> (2)

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#include <limits.h>
#include <math.h>
#include "web2w.h"
#include "pascal.tab.h"
〈 internal declarations 11 〉
〈 global variables 12 〉
〈 auxiliary functions 68 〉
〈 functions 14 〉
int main (int argc , char ∗argv [])
{ 〈process the command line 220 〉
〈 read the WEB 5 〉
〈parse Pascal 99 〉
〈 generate cweb output 114 〉
〈 show summary 13 〉
return 0;

}

I also create the header file web2w.h included in the above C file. It contains the
external declarations and is used to share constants, macros, types, variables, and
functions with scanner and parser.
〈 web2w.h 3 〉 ≡ (3)

〈 external declarations 4 〉

17

4 Reading the WEB

When I read the WEB, I split it into a list of tokens; this process is called “scanning”.
I use flex (the free counterpart of lex) to generate the function ww lex from the
file web.l.
〈 external declarations 4 〉 ≡ (4)

extern int ww lex (void); /∗ the scanner ∗/
extern FILE ∗ww in ; /∗ the scanner’s input file ∗/
extern FILE ∗ww out ; /∗ the scanner needs an output file ∗/

Used in 3.

Using this function, I can read the WEB and produce a token list.
〈 read the WEB 5 〉 ≡ (5)

〈 initialize token list 23 〉
ww lex ();
〈finalize token list 70 〉
〈postprocess NMACRO definitions 66 〉
〈postprocess OMACRO definitions 67 〉 Used in 2.

Reading the WEB results in a list of tokens as used by tangle or weave. At this
point, I do not need to extract the structure of the Pascal program contained in the
WEB. This is left for a later stage. I need to extract the WEB specific structure: text
in limbo followed by modules; modules starting with TEX text followed optionally
by definitions and Pascal code. Aside from this general structure, I will later need
to translate the WEB specific control sequences (starting with @) by cweb specific
control sequences.

The scanner identifies tokens by matching the input against regular expressions
and executing C code if a match is found. The lex file web.l is not a literate
program since it’s not a C file; it is given verbatim in section 8. The functions and
macros used in the action parts inside the file, however, are described below.

4.1 Scanning the WEB

The scanner is written following the WEB User Manual[2].
It has three main modes: the INITIAL mode (or TEX mode), the MIDDLE mode,

and the PASCAL mode; and four special modes: DEFINITION, FORMAT, NAME, and
CONTROL mode.
〈 external declarations 4 〉 +≡ (6)

#define TEX INITIAL

18 4.2 Reading the WEB

The scanner starts out in TEX mode scanning the part of the file that is “in
limbo” and then switches back and forth between TEX mode, MIDDLE mode, and
PASCAL mode, occasionally taking a detour through DEFINITION, FORMAT, NAME,
or CONTROL mode.

While scanning in TEX mode, I need to deal with a few special characters: the
character “@”, because it introduces special web commands and might introduce
a change into Pascal mode; the “|” character, because it starts Pascal mode; and
the “{” and “}” characters , which are used for grouping while in TEX mode.
Unfortunately, these same characters also start and end comments while in Pascal

mode. So finding a “}” in TEX mode might be the end of a group or the end of a
comment. Everything else is just considered plain text. Text may also contain the
“@”, “|”, “{”, and “}” characters if these are preceded by a backslash.

In PASCAL mode, I match the tokens needed to build the Pascal parse tree. These
are different—and far more numerous—than what I need for the TEX part which
my translator will not touch at all. The MIDDLE mode is a restricted PASCAL mode
that does not allow module names. Instead, a module name terminates MIDDLE
mode and starts a new module.

The DEFINITION mode is used to scan the initial part of a macro definition;
the FORMAT mode is a simplified version of the DEFINITION mode used for format
definitions; the NAME mode is used to scan module names; and the CONTROL mode
is used to scan a variety of WEB control codes.

In PASCAL mode, I ignore most spaces and match the usual Pascal tokens. The
main work is left to the Pascal parser.

The switching between the scanning modes is supported by a stack (see sec-
tion 4.6) because it may involve nested structures. For example inside Pascal, a
comment contains TEX code and inside TEX code whatever comes between two “|”
characters is considered Pascal code. A scanner produced by flex is very fast, but
by itself not capable of tracking nested structures.

4.2 Tokens

The parser creates a representation of the WEB file as a list of tokens. Later the
parser will build a parse tree with tokens as leaf nodes. Because C lacks object
orientation, I define token as a union of leaf nodes and internal nodes of the tree.
All instances of the type defined this way share a common tag field as a replacement
for the class information. Every token has a pointer to the next token, a pointer the
previous token, a link field to connect related tokens, and an up pointer pointing
from the leafs of the parse tree upwards to internal nodes and further upwards until
possibly reaching the root of the parse tree.
〈 external declarations 4 〉 +≡ (7)

typedef struct token {
int tag ;
struct token ∗next , ∗previous , ∗link , ∗up ;
union { 〈 leaf node 8 〉; 〈 internal node 100 〉; };

} token;

Tokens that are leaf nodes contain a sequence number, enumerating stretches of

4.2 Tokens 19

contiguous Pascal code, and for debugging purposes, a line number field. There is
some more token specific information, that will be explained as needed.
〈 leaf node 8 〉 ≡ (8)

struct {
int sequence no ;
int line no ;
〈 token specific info 9 〉

} Used in 7.

As a first example for token specific information, I note that most tokens have a
text field that contains the textual representation of the token.
〈 token specific info 9 〉 ≡ (9)

char ∗text ; Used in 8.

The assignment of the tag numbers is mostly arbitrary. The file pascal.y lists
all possible tags and gives them symbolic names which are shown using small caps
in the following. The function tagname , defined in pascal.y, is responsible for
converting the tag numbers back into readable strings.
〈 external declarations 4 〉 +≡ (10)

extern const char ∗tagname (int tag);

Because I do not deallocate tokens, I can simply allocate them from a token
array using the function new token .
〈 internal declarations 11 〉 ≡ (11)

#define MAX_TOKEN_MEM 250000 Used in 2.

〈 global variables 12 〉 ≡ (12)

static token token mem [MAX_TOKEN_MEM] = {{0}};
static int free tokens = MAX_TOKEN_MEM; Used in 2.

〈 show summary 13 〉 ≡ (13)

DBG(dbgbasic , "free tokens = %d\n", free tokens); Used in 2.

〈 functions 14 〉 ≡ (14)

static token ∗new token (int tag)
{ token ∗n;

if (free tokens > 0) n = &token mem [−−free tokens];
else ERROR("token mem overflow");
n→line no = ww lineno ; n→sequence no = sequence no ; n→tag = tag ;
return n;

} Used in 2.

The value of ww lineno , the current line number, is maintained automatically
by the code generated from web.l.
〈 external declarations 4 〉 +≡ (15)

extern int ww lineno ;

20 4.2 Reading the WEB

The value of sequence no is taken from a global variable.
〈 global variables 12 〉 +≡ (16)

int sequence no = 0;

I increment this variable as part of the scanner actions using the macro SEQ.
〈 external declarations 4 〉 +≡ (17)

extern int sequence no ;
#define SEQ (sequence no ++)

The following function is used in the parser to verify that two tokens t and s
belong to the same token sequence.
〈 external declarations 4 〉 +≡ (18)

void seq (token ∗t, token ∗s);

〈 functions 14 〉 +≡ (19)

void seq (token ∗t, token ∗s)
{ CHECK(t→sequence no ≡ s→sequence no , "tokens in line %d "
"and %d belong to different code sequences", t→line no , s→line no);

}

The list of tokens is created by the function add token .
〈 external declarations 4 〉 +≡ (20)

extern token ∗add token (int tag);

The function creates a new token and adds it to the global list of all tokens
maintaining two pointers, one to the first and one to the last token of the list.
〈 global variables 12 〉 +≡ (21)

static token ∗first token ;
token ∗last token ;

〈 external declarations 4 〉 +≡ (22)

extern token ∗last token ;

I initialize the list of tokens by creating a HEAD token, and make it the first and
last token of the list.
〈 initialize token list 23 〉 ≡ (23)

first token = last token = new token (HEAD);
first token→text = ""; Used in 5.

〈 functions 14 〉 +≡ (24)

token ∗add token (int tag)
{ token ∗n = new token (tag);

last token→next = n; n→previous = last token ; last token = n; return n;
}

4.3 Scanner actions 21

4.3 Scanner actions
Now I am ready to explain scanner actions. Let’s start with the most simple cases.
There are quite a few tokens, that are just added to the token list and have a fixed
literal string as textual representation. I use the macro TOK to do this. Making
TOK an external declaration will write its definition into the file web2w.h which will
be included by web.l.
〈 external declarations 4 〉 +≡ (25)

#define TOK (string , tag) (add token (tag)→text = string)

Another class of simple tokens are those that have a varying textual representa-
tion which is defined by the string found in the input file. The variable ww text
points to this input string after it was matched against the regular expression.
Since these strings are not persistent, I need to use the string handling function
copy string before I can store them in the tokens text field. The macro COPY can
be used together with TOK to achieve the desired effect.
〈 external declarations 4 〉 +≡ (26)

#define COPY copy string (ww text)

Slightly more complex is the handling of WEB’s control codes to produce index
entries or to insert verbatim text. Inside the control text the control sequence \AT!
defined in webmac.tex must be replaced by the control sequence \AT defined in
cwebmac.tex. To handle this translation, the scanner switches to CONTROL mode
when processing the control text. At the end of the control text, the scanner
switches back to its previous mode. If the control code was encountered in TEX
mode no new token needs to be generated. The control text is just added to the
current TEX text. In PASCAL or MIDDLE mode, however, the control text must be
packaged as a new control token. This is achieved using the following macros:
〈 external declarations 4 〉 +≡ (27)

#define CTL pre ctl mode = YY_START; BEGIN(CONTROL)
#define END_CTL

if (pre ctl mode 6= TEX) TOK(end string (), ATCTL);
BEGIN(pre ctl mode)

The last class of tokens that I discuss before I turn my attention to the functions
that actually do the string-handling are the tokens where the textual representation
is build up in small increments. Three macros are used to perform the desired
operations: BOS (Begin of String) is used to start a new string, ADD adds characters
to the current string, and EOS (End of String) is used to complete the definition of
the string.
〈 external declarations 4 〉 +≡ (28)

#define BOS new string ()
#define ADD add string (ww text)
#define EOS (string length () > 0 ? TOK(end string (), TEXT) : 0)

String handling functions are used to define these macros and it is time to explain
the string handling in more detail.

22 4.4 Reading the WEB

4.4 Strings

In this section, I define the following functions:
〈 external declarations 4 〉 +≡ (29)

extern char ∗new string (void); /∗ start a new string ∗/
extern void add string (char ∗str); /∗ add characters to the string ∗/
extern char ∗end string (void); /∗ finish the string ∗/
extern char ∗copy string (char ∗str); /∗ all of the above ∗/
extern int string length (void); /∗ the length of the string ∗/

I use a character array called string mem to store these strings. Strings in the
string mem are never deallocated, so memory management is simple. The scanner
can decide when to start a new string by calling new string ; when the scanner has
identified a string, it can add it to the current string using add string ; and when
the string is ready for permanent storage, it calls end string . string length returns
the length of the current string.

Some statistics: tex.web contains 11195 Strings with an average of 46.6 charac-
ters per string and a maximum of 5234 characters (the text in limbo); the second
largest string has 1891 characters. The total number of characters in all strings is
516646. (Scanning etex.web will require even more string memory.)
〈 internal declarations 11 〉 +≡ (30)

#define MAX_STRING_MEM 800000

〈 global variables 12 〉 +≡ (31)

static char string mem [MAX_STRING_MEM];
static int free strings = MAX_STRING_MEM;
static int current string = 0;

〈 show summary 13 〉 +≡ (32)

DBG(dbgbasic , "free strings = %d\n", free strings);

The string currently under construction is identified by the position of its first
character, the current string , and its last character MAX_STRING_MEM−free strings .
〈 functions 14 〉 +≡ (33)

char ∗new string (void)
{ current string = MAX_STRING_MEM − free strings ;

return string mem + current string ;
}
static void add char (char c)
{ if (free strings > 0) string mem [MAX_STRING_MEM − free strings−−] = c;

else ERROR("String memory overflow");
}
void add string (char ∗str)
{ while (∗str 6= 0) add char (∗str ++);
}

4.5 Identifiers 23

char ∗end string (void)
{ char ∗str = string mem + current string ;

if (free strings > 0) string mem [MAX_STRING_MEM − free strings−−] = 0;
else ERROR("String memory overflow");
current string = MAX_STRING_MEM − free strings ; return str ;

}
char ∗copy string (char ∗str)
{ new string (); add string (str); return end string (); }
int string length (void)
{ return (MAX_STRING_MEM − free strings)− current string ; }
void flush string (void)
{ free strings = MAX_STRING_MEM − current string ;

if (free strings > MAX_STRING_MEM) ERROR("String memory underflow");
}

4.5 Identifiers

To be able to parse the embedded Pascal code, I need to take special care of iden-
tifiers. I keep information related to identifiers in a table, called the symbol table .
The function sym no is used to access the table using the name of the identifier as
a key. The table stores pointers to structures called symbols.
〈 external declarations 4 〉 +≡ (34)

typedef struct symbol {
char ∗name ;
int tag ;
struct symbol ∗link ;
int use count , scan count , goto count ;
int arity , arg count ;
int is string , is int , is label , is global , is extern , is zero based ;
long int value ;
token ∗type ;
token ∗eq ;

} symbol;
extern int sym no(char ∗name);
extern symbol ∗symbol table [];

〈 internal declarations 11 〉 +≡ (35)

#define MAX_SYMBOL_TABLE 6007 /∗ a prime ∗/
#define MAX_SYMBOLS 5200 /∗ about 85% of MAX_SYMBOL_TABLE ∗/

〈 global variables 12 〉 +≡ (36)

symbol ∗symbol table [MAX_SYMBOL_TABLE] = {NULL};
static symbol symbols [MAX_SYMBOLS] = {{0}};
static int free symbols = MAX_SYMBOLS;

24 4.5 Reading the WEB

〈 show summary 13 〉 +≡ (37)

DBG(dbgbasic , "free symbols = %d\n", free symbols);

I organize the symbol table as a hash table using double hashing as described
in [5], Chapter 6.4.
〈 functions 14 〉 +≡ (38)

static int symbol hash (char ∗name)
{ int hash = 0;

while (∗name 6= 0) hash = hash + (∗(name ++)⊕ #9E);
return hash ;

}
static symbol ∗new symbol (void)
{ CHECK(free symbols > 0, "Symbol table overflow"); free symbols−−;

return symbols + free symbols ;
}
int sym no(char ∗name)
{ int i, c;

i = symbol hash (name) % MAX_SYMBOL_TABLE;
if (symbol table [i] 6= NULL) {

if (strcmp(symbol table [i]→name ,name) ≡ 0) return i;
if (i ≡ 0) c = 1;
else c = MAX_SYMBOL_TABLE − i;
while (true) { i = i− c;

if (i < 0) i = i + MAX_SYMBOL_TABLE;
if (symbol table [i] ≡ NULL) break;
if (strcmp(symbol table [i]→name ,name) ≡ 0) return i;

}
}
symbol table [i] = new symbol ();
symbol table [i]→name = copy string (name); symbol table [i]→tag = ID;
return i;

}

The reference to the symbol can be stored inside the token in two ways: as
an index into the symbol table or as a pointer to the symbol structure. While
scanning the WEB, I will assign the symbol number (sym no), and while parsing
Pascal, I will add the symbol pointer (sym ptr). This is necessary, because I will
need to distinguish between various local symbols with the same name; these have
only a single entry in the symbol table but the pointers will point to different
symbol structures.
〈 token specific info 9 〉 +≡ (39)

int sym no ;
struct symbol ∗sym ptr ;

This leads to the following macros:

4.5 Identifiers 25

〈 external declarations 4 〉 +≡ (40)

#define SYM_PTR (name) symbol table [sym no(name)]
#define SYMBOL
{ int s = sym no(ww text); add token (symbol table [s]→tag)→sym no = s; }

#define SYM (t) (symbol table [(t)→sym no])

It’s easy to convert such a token back to a string.
〈 convert token t to a string 41 〉 ≡ (41)

case ID: case PID: case PCONSTID: case PARRAYFILETYPEID:
case PARRAYFILEID: case PFUNCID: case PPROCID: case PDEFVARID: case

PDEFPARAMID: case PDEFREFID: case PDEFCONSTID: case PDEFTYPEID:
case PDEFTYPESUBID: case PDEFFUNCID: case CREFID: case NMACRO: case

OMACRO: case PMACRO:
return SYM(t)→name ; Used in 113.

In TEX, like in most programs, there are two kinds of symbols: global and local
symbols. While scanning, every symbol is entered into the “global” symbol table.
While parsing, I will discover, that the variable f is a file variable in one function
and an integer variable in another function. The two occurrences of f have different
scope. So I want to link different occurrences of f to different entries in the symbol
table. In general, macros are always global and their properties, the use count for
example, must be accumulated even for local uses. But when numeric macros are
used in goto statements to give names to the labels, these labels are of course local
symbols.

I use the function localize to create a local version of a symbol.
〈 external declarations 4 〉 +≡ (42)

extern void localize (token ∗t);

To open a new scope, I use the function scope open ; to close it again, I use the
function scope close .
〈 external declarations 4 〉 +≡ (43)

extern void scope open (void);
extern void scope close (void);

These functions use a small array holding all the symbol numbers of currently local
symbols and another array to hold pointers to the global symbols of the same name.
〈 global variables 12 〉 +≡ (44)

#define MAX_LOCALS 50
static int locals [MAX_LOCALS];
static symbol ∗globals [MAX_LOCALS];
static int free locals = MAX_LOCALS;

〈 functions 14 〉 +≡ (45)

void scope open (void)
{ CHECK(free locals ≡ MAX_LOCALS,

"Opening a new scope without closing the previous one");
}

26 4.6 Reading the WEB

void scope close (void)
{ int i;

for (i = free locals ; i < MAX_LOCALS; i++) {
globals [i]→use count = symbol table [locals [i]]→use count ;
globals [i]→scan count = symbol table [locals [i]]→scan count ;
globals [i]→is label = symbol table [locals [i]]→is label ;
symbol table [locals [i]] = globals [i];

}
free locals = MAX_LOCALS;

}

To localize a symbol, I create a new one and enter it, after saving the global symbol,
into the symbol table.

〈 functions 14 〉 +≡ (46)

void localize (token ∗t)
{ int sym no = t→sym no ;

symbol ∗l, ∗g;

l = new symbol (); g = symbol table [sym no]; l→name = g→name ;
l→tag = g→tag ; l→eq = g→eq ; l→use count = g→use count ;
l→scan count = g→scan count ; l→is label = g→is label ;
symbol table [sym no] = l; CHECK(free locals > 0,

"Overflow of local symbols in line %d", t→line no);
free locals−−; locals [free locals] = sym no ; globals [free locals] = g;
t→sym ptr = l;

}

4.6 Linking related tokens
So far I have considered the WEB file as one long flat list of tokens. As already
mentioned above, the file has, however, also a nested structure: For example, each
“{” token is related to a “}” token that ends either a TEX group or a Pascal

comment. While scanning, I will need to know about this structure because it is
necessary to do a correct switching of modes. Hence, I use the link field to connect
the first token to the latter token. This information is also useful at later stages,
for example when I expand macros. Table 1 gives a list of related tokens.

To track the nesting of structures while scanning, I need a stack:

〈 global variables 12 〉 +≡ (47)

#define MAX_WW_STACK 200
static token ∗ww stack [MAX_WW_STACK] = {0};
static int ww sp = 0;

I define the functions ww push and ww pop to operate on the stack. When
popping a token, I keep the nesting information by linking it to its matching token.
The function ww top is can be used to test the tag of the token on top of the stack.

4.6 Linking related tokens 27

Left Right Mode Comment
() PASCAL/PASCAL needed for macro expansion
{ } PASCAL/TEX/PASCAL comments
{ } MIDDLE/TEX/MIDDLE comments
{ } TEX/TEX grouping
| | TEX/PASCAL/TEX typesetting code
@< @> module names
= begin of Pascal

== begin of Pascal

@ PASCAL end of Pascal

@* PASCAL end of Pascal

@d PASCAL end of Pascal

@f PASCAL end of Pascal

@p PASCAL end of Pascal

" " list of WEB strings
@>= @>= continuation of module
@p @p continuation of program

Tab. 1: List of linked tokens

〈 external declarations 4 〉 +≡ (48)

extern void ww push (token ∗t);
extern token ∗ww pop(token ∗t);
extern int ww top is (int tag);

〈 functions 14 〉 +≡ (49)

void ww push (token ∗left)
{ CHECK(ww sp < MAX_WW_STACK, "WW stack overflow");
DBG(dbglink , "Pushing[%d]:",ww sp);
if (left 6= NULL) DBG(dbglink , THE_TOKEN(left));
ww stack [ww sp ++] = left ;

}
token ∗ww pop(token ∗right)
{ token ∗left ;
CHECK(ww sp > 0, "Mode stack underflow"); left = ww stack [−−ww sp];
if (left 6= NULL) left→link = right ;
DBG(dbglink , "Popping[%d]:",ww sp);
if (left 6= NULL) DBG(dbglink , THE_TOKEN(left));
return left ;

}

28 4.7 Reading the WEB

int ww top is (int tag)
{ return ww sp > 0 ∧ ww stack [ww sp − 1] 6= NULL ∧

ww stack [ww sp − 1]→tag ≡ tag ;
}

Using the stack, I can now also distinguish the use of “{” and “}” as a grouping
construct in TEX from the use of starting and ending comments in Pascal. When
I encounter “{” in TEX mode, it introduces a new level of grouping and I do not
create a new token. Instead I push NULL on the stack. When I encounter “{” in
PASCAL mode, however, it is the start of a comment; I create a token and push it.
When I encounter the matching “}”, I am always in TEX mode. I pop the stack
and test the value: If it was NULL, I can continue in TEX mode because it was
a grouping character; if it was not NULL, it is the end of a comment. I create a
token for it and continue in PASCAL mode. While the link field usually points in
“forward” direction, the link field of the “}” token points back to the “{” token.
This is useful for inserting symbols before a possible comment instead of after it.
For an example see section 6.9.
〈 external declarations 4 〉 +≡ (50)

#define PUSH ww push (last token)
#define PUSH_NULL ww push (NULL)
#define POP ww pop(last token)
#define POP_NULL (ADD, POP)
#define POP_MLEFT

(EOS, TOK("}", RIGHT), BEGIN(MIDDLE), last token→link = POP)
#define POP_PLEFT

(EOS, TOK("}", RIGHT), BEGIN(PASCAL), last token→link = POP)
#define POP_LEFT (ww top is (MLEFT) ? POP_MLEFT : (ww top is (PLEFT) ?

POP_PLEFT : POP_NULL))

4.7 Module names

I need to maintain information for each module. I keep this information in a
table, called the module table. The table is accessed by the string representing the
module name as a key. This sounds very similar to what I did for identifiers, there
is, however, one main difference: Modules are sometimes referenced by incomplete
module names that end with an ellipsis (. . .). These incomplete module names
may not even be valid TEX code. For this reason, I use a binary search tree to
map module names to modules. The first thing I need, therefore, is a function
to compare two module names. The function module cmp(n, m) will compare the
name after token n to the name after token m. It returns a negative value for
“before”; zero for “equal”; and a positive value for “after” in alphabetic order.
After m there is always a full module name; the name after n might end abruptly
with an ellipsis.
〈 functions 14 〉 +≡ (51)

static int module name cmp(token ∗n, token ∗m)
{ n = n→next ; m = m→next ; /∗ advance from “@<” to the name ∗/

4.7 Module names 29

if (n→next→tag ≡ ELIPSIS)
return strncmp(n→text ,m→text , strlen (n→text));

else return strcmp(n→text ,m→text);
}

I organize the module table as a binary tree and allocate new modules from a
large array.
〈 internal declarations 11 〉 +≡ (52)

#define MAX_MODULE_TABLE 1000

〈 global variables 12 〉 +≡ (53)

static modulemodule table [MAX_MODULE_TABLE] = {{0}};
static int free modules = MAX_MODULE_TABLE;
static module∗module root = NULL;

〈 external declarations 4 〉 +≡ (54)

typedef struct module {
token ∗atless ;
token ∗atgreater ;
struct module ∗left , ∗right ;

} module;
extern void add module (token ∗atless);
extern module ∗find module (token ∗atless);

〈 show summary 13 〉 +≡ (55)

DBG(dbgbasic , "free modules = %d\n", free modules);

To look up a module in the module table, I use the function find module . It
returns a pointer to the module given the pointer to the “@<” token that precedes
the module name. The function will allocate a new module if needed.
〈 functions 14 〉 +≡ (56)

module ∗find module (token ∗atless)
{ module ∗∗m = &module root ;

while (∗m 6= NULL) { int d = module name cmp(atless , (∗m)→atless);
if (d ≡ 0) return ∗m;
else if (d < 0) m = &((∗m)→left);
else m = &((∗m)→right);

}
CHECK(free modules > 0, "Module table overflow");
∗m = module table + MAX_MODULE_TABLE − free modules−−;
(∗m)→atless = atless ; return ∗m;

}

Because modules can be defined in multiple installments, I link together the
closing “@>” tokens. This is done by calling the function add module whenever I
find the two tokens “@>=”.

30 4.7 Reading the WEB

〈 functions 14 〉 +≡ (57)

void add module (token ∗atless)
{ module ∗m = find module (atless);

token ∗atgreater = m→atgreater ;

if (atgreater ≡ NULL) m→atgreater = atless→link ;
else {

while (atgreater→link 6= NULL) atgreater = atgreater→link ;
atgreater→link = atless→link ;

}
}

Next I consider the problem of scanning module names. The name of a module
starts after a “@<” token. If this token shows up, I have to do some preparations
depending on the current mode: If I am in TEX mode, I need to terminate the
current TEXT token; if I am in MIDDLE mode, I pop the stack and terminate the
macro or format definition I were just scanning; no special preparation is needed if
I am in PASCAL mode. Then I push the “@<” token on the stack, start a new TEXT

token, and switch to NAME mode. When I encounter the matching “@>” or “@>=”
token, I add the module to the module table by calling find module to cover the
case that this is the first and only complete occurrence of the module name.

〈 external declarations 4 〉 +≡ (58)

#define AT_GREATER_EQ
TOK("@>", ATGREATER), add module (POP), TOK("=", EQ), PUSH, SEQ

#define AT_GREATER TOK("@>", ATGREATER),find module (POP)

You may have noticed that the above AT_GREATER_EQ macro pushes the EQ

token on the stack. I match this token up with the token that ends the Pascal code
following the equal sign. As you will see below, I do the same for macro definitions.
Further, I link all the unnamed modules together using the “@p” tokens. I add an
extra EQ token to match the convention that I have established for named modules.

〈 external declarations 4 〉 +≡ (59)

extern token ∗program ;
#define PROGRAM

(program→link = last token , program = last token), TOK("", EQ)

I use the first token as list head.

〈 global variables 12 〉 +≡ (60)

token ∗program ;

〈 initialize token list 23 〉 +≡ (61)

program = first token ;

4.8 Definitions 31

4.8 Definitions
In a WEB file, the token “@d” introduces the definition of a numeric constant or a
macro with or without parameter. When the scanner encounters such a token,
it enters the DEFINITION mode. Similar, the token “@f” introduces a format
specification switching the scanner to FORMAT mode. In FORMAT mode, it scans
tokens until the first newline character brings the scanner back to MIDDLE mode.

In DEFINITION mode, the first token is an identifier which will be stored in the
symbol table. Then follows an optional macro parameter “(#)”. After the single
or double equal sign, the scanner switches to MIDDLE mode, not without pushing
the equal sign on the stack to be matched against the first token after the following
Pascal code.

After scanning an “=” token, I know that a numeric macro is following, and I
record this fact by changing the tag of the identifier in the token and in the symbol
table.

〈 external declarations 4 〉 +≡ (62)

#define CHGTAG (t, x) ((t)→tag = (x))
#define CHGID (t, x) (SYM(t)→tag = (x))
#define CHGTYPE (t, x) (SYM(t)→type = (x))
#define CHGVALUE (t, x) (SYM(t)→value = (x))
#define CHGTEXT (t, x) ((t)→text = (x))
#define CHGSNO (t, x) ((t)→sym no = (x)→sym no)

After scanning an “==” token, I know that I have either an ordinary macro or a
parametrized macro. A PARAM token tells the difference. I keep track of all macro
definitions in three lists:

〈 global variables 12 〉 +≡ (63)

static symbol ∗omacros = NULL, ∗∗omacro tail = &omacros ,
∗pmacros = NULL, ∗∗pmacro tail = &pmacros , ∗nmacros = NULL,
∗∗nmacro tail = &nmacros ;

After scanning, the variables nmacros , omacros , and pmacros are pointing to the
lists of all numeric, ordinary, respectively parametric macros, linked together by
the link field in the symbol table. The lists are used to postprocess the definitions.

〈 functions 14 〉 +≡ (64)

void def macro(token ∗eq , int tag)
{ token ∗id ;

if (eq→previous→tag ≡ PARAM)
{ id = eq→previous→previous ; tag = PMACRO; }
else id = eq→previous ;
CHGTAG(id , tag); CHGID(id , tag); SYM(id)→eq = eq ;
if (tag ≡ NMACRO)
{ ∗nmacro tail = SYM(id); nmacro tail = &(SYM(id)→link); }
else if (tag ≡ OMACRO)
{ ∗omacro tail = SYM(id); omacro tail = &(SYM(id)→link); }
else if (tag ≡ PMACRO)

32 4.8 Reading the WEB

{ ∗pmacro tail = SYM(id); pmacro tail = &(SYM(id)→link); }
DBG(dbgexpand , "Defining %s: %s\n", tagname (tag), SYM(id)→name);

}

〈 external declarations 4 〉 +≡ (65)

extern void def macro(token ∗eq , int tag);
#define DEF_MACRO (tag) def macro(last token , tag)

After all macro definitions have been recorded, we apply some postprocessing.
WEB will evaluate numeric macros and insert the computed value in the generated

code. When converting such a macro to a C macro it might be necessary to put
parentheses around the replacement text to ensure the correct evaluation. Just
think of defining two numeric macros x as 2 + 2 and y as −x; then you want y to
have the value −4 not 0.

〈postprocess NMACRO definitions 66 〉 ≡ (66)

{ symbol ∗s;

for (s = nmacros ; s 6= NULL; s = s→link) { token ∗t, ∗start , ∗end ;

t = s→eq→next ;
while (¬is pascal (t)) t = t→next ;
start = t;
if (t→tag ≡ PINTEGER ∨ t→tag ≡ OCTAL ∨ t→tag ≡ HEX ∨ t→tag ≡

PCHAR ∨ t→tag ≡ PSTRING ∨ t→tag ≡ CHAR ∨ t→tag ≡
STRING ∨ t→tag ≡ NMACRO) t = t→next ;

end = NULL;
while (t 6= s→eq→link) {

if (t→tag ≡ MLEFT) t = t→link ;
else if (is pascal (t)) end = t;
t = t→next ;

}
if (end 6= NULL) { winsert after (start→previous , POPEN, "(");

winsert after (end , PCLOSE, ")");
DBG(dbgmacro ,

"Adding parentheses for numeric macro %s in line %d\n",
s→name , s→eq→line no);

}
}

} Used in 5.

Some of TEX’s and ε-TEX’s ordinary macros should be converted to numeric
macros mainly because of the special way web2w treats case labels (see section 6.16).
Because WEB uses for ordinary macros the same text replacement mechanism that
C uses for macros, no parentheses are needed around the converted macros.

4.8 Definitions 33

〈postprocess OMACRO definitions 67 〉 ≡ (67)

{ symbol ∗s;
for (s = omacros ; s 6= NULL; s = s→link) { bool convertible = false ;

token ∗t;
t = s→eq→next ;
if (t→tag ≡ PPLUS ∨ t→tag ≡ PMINUS) t = t→next ;
if (t→tag ≡ PINTEGER ∨ t→tag ≡ OCTAL ∨ t→tag ≡ HEX ∨ t→tag ≡

NMACRO ∨ (t→tag ≡ OMACRO ∧ SYM(t)→tag ≡ NMACRO)) {
convertible = true ;
for (t = t→next ; convertible ∧ t 6= s→eq→link ; t = t→next)

if (¬is pascal (t)) continue;
else if (t→tag ≡ MLEFT) t = t→link ;
else convertible = false ;

}
if (convertible)
{ t = s→eq→previous ; t→tag = NMACRO; s→tag = NMACRO;
DBG(dbgmacro , "Converting %s from ordinary to numeric \

macro in line %d\n", s→name , t→line no);
}

}
} Used in 5.

Also parametrized macros need postprocessing to identify tail calls and adjust
use counts and scan counts. In a macro definition, the link of the equal sign points
to the token that ends the definition. To find a tail call, we start with the last token
that belongs to the macro and scan backward to the last Pascal token. Instead of
checking for all possible Pascal tokens, I check for those non Pascal tokens that I
want to skip. If the last Pascal token is a PMACRO token with arg count > 0, I have
found a tail call. In this case, the function tail call returns a pointer to the final
PMACRO; otherwise it returns a pointer to the token after the last Pascal token. To
skip a Pascal comment, we use the link of its right brace to its left brace.
〈 auxiliary functions 68 〉 ≡ (68)

int is pascal (token ∗t)
{ switch (t→tag) {

case NL: case INDENT: case ATPLUS: case ATSLASH: case ATHASH:
case ATBAR: case ATCTL: case METACOMMENT: case CIGNORE: case

WGUBED: case WTINI: case WTATS: case ATCOMMA:
case ATBACKSLASH: case ATSEMICOLON: return 0;

default: return 1;
}

}
static token ∗wback (token ∗t)
{ while (true) { t = t→previous ;

if (t→tag ≡ RIGHT) t = t→link ;
else if (is pascal (t)) return t;

34 4.9 Reading the WEB

}
}
token ∗tail call (token ∗eq)
{ token ∗p;

p = wback (eq→link);
if (p→tag ≡ PMACRO) return p;
else return p→next ;

} Used in 2.

Eliminating a macro tail call possibly renders a PMACRO unused and ready for
elimination itself. So after parsing, we traverse the PMACROs, determine their tail
calls, and reduce if necessary the use- and scan counts. For later use, we store the
pointer to the tail call in the type field of the symbol table.

〈postprocess PMACRO definitions 69 〉 ≡ (69)

{ symbol ∗s;
for (s = pmacros ; s 6= NULL; s = s→link)

if (s→arity < s→arg count) { token ∗t = tail call (s→eq);

s→type = t;
if (t→tag ≡ PMACRO)
{ DBG(dbgmacro , "Tail call of %s (%d,%d) found in macro \

%s (%d) in line %d\n", SYM(t)→name , SYM(t)→use count ,
SYM(t)→scan count , s→name , s→use count , t→line no);

SYM(t)→use count −= s→use count ; SYM(t)→scan count −−;
}

}
} Used in 99.

4.9 Finishing the token list

When the scanner is done, I terminate the token list with two end of file tokens:
one for Pascal and one for the WEB. Further, i mark the main program as extern
and take the opportunity to change the directory separator for the TEX area and
the TEX font area .

〈finalize token list 70 〉 ≡ (70)

TOK("", ATP); PROGRAM; PUSH;
TOK("", PEOF); TOK("", WEBEOF); POP; SYM_PTR("main")→is extern = 1;
SYM_PTR("\"TeXinputs:\"")→name = "\"TeXinputs/\"";
SYM_PTR("\"TeXfonts:\"")→name = "\"TeXfonts/\""; Used in 5.

At this point I might want to have a complete list of all tokens and identifiers
for debugging purposes.

〈finalize token list 70 〉 +≡ (71)

if (debugflags & dbgtoken) { token ∗t = first token ;

4.9 Finishing the token list 35

while (t 6= NULL) { MESSAGE(THE_TOKEN(t)); t = t→next ; }
}
if (debugflags & dbgid) { int i;

for (i = free symbols ; i < MAX_SYMBOLS; i++)
MESSAGE("symbol[%d]=%s (%s)\n", i, symbols [i].name ,

tagname (symbols [i].tag));
}

37

5 Parsing Pascal

I use bison (the free replacement of yacc) to implement the parser. Fortunately
TEX does not use the full Pascal language, so the parser can be simple. Further, I
do not need to generate code, but just analyze the Pascal programs for the purpose
of finding those constructions where Pascal differs from C and need a conversion.
If I discover such an instance, I change the tags of the affected tokens, set the
link field to connect related tokens, or even construct a parse tree and link to it
using the up field. In a next sweep over the token list in section 6, these changed
tokens will help us make the appropriate transformations. But before I can do this,
I need to feed the parser with the proper tokens, but not in the order I find them
in the WEB file. I have to “tangle” them to get them into Pascal program order.
The function that is supposed to deliver the tangled tokens is called pp lex . In
addition, the parser expects a function pp error to produce error messages.
〈 external declarations 4 〉 +≡ (72)

extern int pp lex (void);
extern void pp error (const char ∗message);

The function pp error is very simple:
〈 functions 14 〉 +≡ (73)

void pp error (const char ∗message)
{ ERROR("Parse error in line %d: %s", pp lval→line no ,message); }

5.1 Generating the sequence of Pascal tokens

Primarily, the Pascal tokens come from the unnamed modules and then from
expanding module names and macros. Because modules and macros may reference
other modules and macros, I will need a stack to keep track of where to continue
expansion when I have reached the end of the current expansion. The stack is in
the array pp stack and is accessed using pp sp as a stack pointer. It grows from
pp sp ≡ MAX_PPSTACK, the empty stack, down to pp sp ≡ 0, a full stack. I add an
extra entry to the pp stack array to make pp sp ≡ MAX_PPSTACK a valid index into
the array. This avoids the test for an empty stack in the macro DBGTOKS.
〈 global variables 12 〉 +≡ (74)

#define MAX_PPSTACK 40
static struct {

token ∗next , ∗end , ∗link ;
int environment ;

38 5.1 Parsing Pascal

token ∗parameter ;
} pp stack [MAX_PPSTACK + 1] = {{0}};
static int pp sp = MAX_PPSTACK;

In each stack entry, next points to the next token and end past the last token of
the current replacement text. In the case of modules, where the replacement text
for the module name might be defined in multiple installments, the link pointer is
used to point to the continuation of the current replacement text.

In the parameter field, I store the pointer to the “(” token preceding the pa-
rameter of a parametrized macro; it provides us conveniently with a pointer to the
parameter text with its next pointer and with its link pointer to the “)” token, a
pointer directly to the end of the parameter text. When I expand the parameter
text of a parametrized macro, I need the environment variable. It points down the
stack to the stack entry that contains the macro call. This is the place where I
will find the replacement for a “#” token that might occur in the parameter text
of nested parametrized macros.

The function pp push will store the required information on the stack. Instead of
passing the next and end pointer separately, I pass a pointer to the “=” token from
the macro or module definition. This token conveniently contains both pointers.
The function then advances the stack pointer, initializes the new stack entry, and
returns the pointer to the first token of the replacement. pp pop will pop the stack
and again return the pointer to the next token.

〈 functions 14 〉 +≡ (75)

token ∗pp push (token ∗link , token ∗eq , int environment , token ∗parameter)
{ CHECK(pp sp > 0, "Pascal lexer stack overflow");

pp sp−−; pp stack [pp sp].link = link ; pp stack [pp sp].next = eq→next ;
pp stack [pp sp].end = eq→link ;
pp stack [pp sp].environment = environment ;
pp stack [pp sp].parameter = parameter ;
DBG(dbgexpand , "Push pp_lex[%d]: ", MAX_PPSTACK − pp sp);
DBGTOKS(dbgexpand , eq→next , eq→link); return pp stack [pp sp].next ;

}
token ∗pp pop(void)
{ CHECK(pp sp < MAX_PPSTACK, "Pascal Lexer stack underflow");

pp sp ++; DBG(dbgexpand , "Pop pp_lex[%d]: ", MAX_PPSTACK − pp sp);
DBGTOKS(dbgexpand , pp stack [pp sp].next , pp stack [pp sp].end); return

pp stack [pp sp].next ;
}

The function pp lex is what I write next. In an ”endless” loop, I read the next
token from the stack just described, popping and pushing the stack as necessary. If
I find a Pascal token—it has a tag value greater than FIRST PASCAL TOKEN—I can
return its tag immediately to the parser. WEB tokens receive special treatment.
When I deliver a token to the parser, pp lval , the semantic value of the token, is
the token pointer itself.

5.2 Simple cases for the parser 39

〈 functions 14 〉 +≡ (76)

int pp lex (void)
{ token ∗t;

int tag ;
t = pp stack [pp sp].next ;
while (true) {

if (t ≡ pp stack [pp sp].end)
{ 〈process the end of a code segment 95 〉

continue;
}
tag = t→tag ;

tag known :
if (tag > FIRST PASCAL TOKEN)
{ pp stack [pp sp].next = t→next ; goto found ;
}
else
{ switch (tag) { 〈 special treatment for WEB tokens 78 〉

default: ERROR("Unexpected token in pp_lex:"THE_TOKEN(t));
}

}
}

found :
DBG(dbgpascal , "pp_lex: %s->\t", tagname (tag));
DBG(dbgpascal , THE_TOKEN(t));
if (pp out 6= NULL) fprintf (pp out , "%s ", token2string (t));
t→pp sp = pp sp ; pp lval = t; return tag ;

}

In the above procedure, we record the nesting level of the expansion stack in
the token before we assign it to pp lval this will help us to avoid some unfortunate
placements of case labels in section 6.16.
〈 token specific info 9 〉 +≡ (77)

int pp sp ;

5.2 Simple cases for the parser
Now let’s look at all the WEB tokens and what pp lex should to do with them. Quite
a lot of them can be simply skipped:
〈 special treatment for WEB tokens 78 〉 ≡ (78)

case NL: case INDENT:
if (pp out 6= NULL) fprintf (pp out , "%s", token2string (t));

case METACOMMENT: case ATCTL: case ATEX: case ATQM: case ATPLUS:
case ATSLASH: case ATBACKSLASH: case ATBAR: case ATHASH: case

ATCOMMA: case ATAND: case ATSEMICOLON: case ATLEFT: case
ATRIGHT:

t = t→next ; continue; Used in 76.

40 5.2 Parsing Pascal

Comments can be skipped in a single step:
〈 special treatment for WEB tokens 78 〉 +≡ (79)

case MLEFT: case PLEFT: t = t→link→next ; continue;

The Pascal end-of-file token is passed to the parser which then should terminate.
〈 special treatment for WEB tokens 78 〉 +≡ (80)

case PEOF: pp stack [pp sp].next = t→next ; goto found ;

Simple is also the translation of octal or hexadecimal constants and single char-
acter strings: I translate them as Pascal integers. The token “@$”, it’s the string
pool checksum, is an integer as well.
〈 special treatment for WEB tokens 78 〉 +≡ (81)

case ATDOLLAR: case OCTAL: case HEX: case CHAR:
pp stack [pp sp].next = t→next ; tag = PINTEGER; goto found ;

The last simple case is an identifier. For identifiers, I find the correct tag in the
symbol table which is maintained by the parser. At this point, I give tokens that
still have the tag ≡ ID the default tag PID and link tokens to the actual symbol
structure, which might be local or global.
〈 special treatment for WEB tokens 78 〉 +≡ (82)

case ID:
{ symbol ∗s = SYM(t);

tag = s→tag ;
if (tag ≡ ID) tag = s→tag = PID;
t→sym ptr = s; t→tag = tag ; goto tag known ;

}

The parser will increment the use count of the symbol, depending on the usage
of it. ID’s that are defined but never used will have a use count of zero and can be
eliminated.
〈 external declarations 4 〉 +≡ (83)

#define USE (T) (T)→sym ptr→use count ++;
#define USE_NMACRO (T) USE(T); propagate use ((T)→sym ptr);

When a numeric macro is used, also its defining expression gets used. So we
have to propagate the use count.
〈 functions 14 〉 +≡ (84)

void propagate use (symbol ∗s)
{ token ∗t;

if (s→use count > 1) return;
for (t = s→eq→next ; t 6= s→eq→link ; t = t→next)

if (t→tag ≡ NMACRO) { SYM(t)→use count ++; propagate use (SYM(t));
}

}

5.3 The macros debug, gubed, and friends 41

〈 external declarations 4 〉 +≡ (85)

extern void propagate use (symbol ∗s);

A few macros are actually never used nor are they mentioned somewhere in the
explanatory text. Still, I want to keep their definition as part of the documentation.
So I mark them as used.

〈finalize token list 70 〉 +≡ (86)

SYM_PTR("below_display_skip")→use count = 1;
SYM_PTR("below_display_short_skip")→use count = 1;
SYM_PTR("top_skip")→use count = 1;
SYM_PTR("tab_skip")→use count = 1;
SYM_PTR("thin_mu_skip")→use count = 1;
SYM_PTR("med_mu_skip")→use count = 1;
SYM_PTR("thick_mu_skip")→use count = 1;
SYM_PTR("toks")→use count = 1;
SYM_PTR("output_penalty")→use count = 1;
SYM_PTR("TeX_banner")→use count = 1; /∗ ε-TEX ∗/

5.3 The macros debug, gubed, and friends

TEX does some special trickery with the pseudo keywords debug, gubed, init,
tini, stat, and tats. These identifiers are used to generate different versions of
TEX for debugging, initialization, and gathering of statistics. The natural way
to do this in C is the use of # ifdef . . .# endif . It is however not possible
in C to define a macro like “# define debug # ifdef DEBUG” because the C

preprocessor performs a simple one-pass replacement on the source code. So macros
are expanded and the expansion is not expanded a second time.
It would be possible to define a module 〈 debug 123 〉 that ctangle expands to
“# ifdef DEBUG” before the C preprocessor sees it; the other possibility is to do
the expansion right now in web2w. The latter possibility is simple, so I do it here,
but it affects the visual appearance of the converted code to its disadvantage.

There are further possibilities too: I could redefine the macro as “# define
debug if (Debug) {” making it plain C code. Then the compiler would insert
or optimize away the code in question depending on whether I say “# define
Debug 1” or “# define Debug 0”. The stat. . . tats brackets are however often
used to enclose variable- or function-definitions where an “if (Debug) {” would
not work.

There are, however, also instances where the “# ifdef DEBUG” approach does
not work. For instance, debug. . .gubed is used inside the macro succumb .
Fortunately there are only a few of these instances and I deal with them in the
patch file.

As far as the parser is concerned, I just skip these tokens.

〈 special treatment for WEB tokens 78 〉 +≡ (87)

case WDEBUG: case WGUBED: case WINIT: case WTINI: case WSTAT: case
WTATS: t = t→next ; continue;

42 5.4 Parsing Pascal

Later, I get them back into the cweb file using the following code. It takes care
not to replace the special keywords when they are enclosed between vertical bars
and are only part of the descriptive text.
〈 convert t from WEB to cweb 88 〉 ≡ (88)

case WDEBUG:
if (t→previous→tag ≡ BAR) wputs (t→text);
else { wprint pre ("#ifdef @!DEBUG");
}
t = t→next ; break;

case WINIT:
if (t→previous→tag ≡ BAR) wputs (t→text);
else { wprint pre ("#ifdef @!INIT");
}
t = t→next ; break;

case WSTAT:
if (t→previous→tag ≡ BAR) wputs (t→text);
else { wprint pre ("#ifdef @!STAT");
}
t = t→next ; break;

case WGUBED: case WTINI: case WTATS:
if (t→previous→tag ≡ BAR) wputs (t→text);
else { wprint pre ("#endif");
}
t = t→next ;
if (t→tag ≡ ATPLUS ∨ t→tag ≡ ATSLASH) t = t→next ;
if (t→tag ≡ NL) t = t→next ;
break; Used in 115.

I ignore “@+” tokens that precede debug and friends, because their replacement
should always start on the beginning of a line.
〈 convert t from WEB to cweb 88 〉 +≡ (89)

case ATPLUS: t = t→next ;
if (¬following directive (t)) wputs ("@+");
else DBG(dbgcweb , "Eliminating @+ in line %d\n", t→line no); break;

5.4 Parsing numerical constants
I do not expand numerical macros, instead I expand the Pascal grammar to handle
NMACRO tokens. This is also the right place to switch numeric macros from symbol
numbers to symbol pointers. For each use of the token, the parser will increment the
use count field in the symbol table. This will allow us later to eliminate definitions
that are no longer used. The handling of WEB strings is similar.
〈 special treatment for WEB tokens 78 〉 +≡ (90)

case NMACRO: t→sym ptr = SYM(t);
if (t→sym ptr→eq→next→tag ≡ STRING) {

token ∗s = t→sym ptr→eq→next ;

5.4 Parsing numerical constants 43

if (s→sym ptr 6= NULL) { s→sym ptr = SYM(s);
DBG(dbgstring , "Using numeric macro %s in line %d\n",

s→sym ptr→name , t→line no);
}

}
pp stack [pp sp].next = t→next ; goto found ;

case STRING:
if (t→sym no 6= 0) { t→sym ptr = SYM(t);
}
DBG(dbgstring , "Using string %s in line %d\n", t→text , t→line no);
pp stack [pp sp].next = t→next ; goto found ;

Occasionally, I will need the ability to determine the value of a token that the
Pascal parser considers an integer. The function getval will return this value.

〈 external declarations 4 〉 +≡ (91)

extern long int getval (token ∗t);

〈 functions 14 〉 +≡ (92)

long int getval (token ∗t)
{ long int n = 0;

switch (t→tag) {
case ATDOLLAR: n = 0; break;
case PINTEGER: n = strtol (t→text , NULL, 10); break;
case OMACRO:

if (SYM(t)→tag 6= NMACRO)
ERROR("Unable to get value for OMACRO in line %d", t→line no);

case NMACRO: t = SYM(t)→eq ; CHECK(t→tag ≡ EQEQ,
"= expected in numeric macro in line %d", t→line no);

t = t→next ;
if (t→tag ≡ POPEN) t = t→next ;
if (t→tag ≡ PMINUS) { t = t→next ; n = −getval (t);
}
else if (t→tag ≡ PPLUS) { t = t→next ; n = getval (t);
}
else n = getval (t);
while (true) {

if (t→next→tag ≡ PPLUS) { t = t→next→next ; n = n + getval (t);
}
else if (t→next→tag ≡ PMINUS) { t = t→next→next ;

n = n− getval (t);
}
else break;

}
break;

case OCTAL: n = strtol (t→text + 2, NULL, 8); break;

44 5.5 Parsing Pascal

case HEX: n = strtol (t→text + 2, NULL, 16); break;
case CHAR: n = (int)(unsigned char) t→text [1]; break;
case PCONSTID: n = SYM(t)→value ; break;
default: ERROR("Unable to get value for tag %s in line %d", TAG(t),

t→line no);
}
return n;

}

Notice that I assume that tokens which are tagged as constant identifiers are
expected to have a value stored in the symbol table. We write this value using the
macro SETVAL.

〈 external declarations 4 〉 +≡ (93)

#define SETVAL (t, val) SYM(t)→value = val

5.5 Expanding module names and macros

Now let’s turn to the more complicated operations, for example the expansion of
module names. I know that I hit a module name when I encounter an “@<” token.
At this point, I advance the current token pointer past the end of the module name,
look up the module in the module table, and push its first code segment.

〈 special treatment for WEB tokens 78 〉 +≡ (94)

case ATLESS:
{ token ∗eq , ∗atgreater ;

atgreater = find module (t)→atgreater ;
CHECK(atgreater 6= NULL, "Undefined module @<%s ...@> in line %d",

token2string (t→next), t→line no);
DBG(dbgexpand , "Expanding module @<%s@> in line %d\n",

token2string (t→next), t→line no); eq = atgreater→next ;
pp stack [pp sp].next = t→link→next ;
t = pp push (atgreater→link , eq , 0, NULL); continue;

}

When I reach the end of the code segment, I can check the link field to find its
continuation.

〈process the end of a code segment 95 〉 ≡ (95)

token ∗link = pp stack [pp sp].link ;

if (link 6= NULL) { token ∗eq ;

eq = link→next ; link = link→link ; pp pop(); t = pp push (link , eq , 0, NULL);
}
else t = pp pop(); Used in 76.

Slightly simpler are ordinary macros. Before we expand them, however, we check
if they have been converted to numeric macros.

5.6 Expanding macros with parameters 45

〈 special treatment for WEB tokens 78 〉 +≡ (96)

case OMACRO:
if (SYM(t)→tag ≡ NMACRO) { tag = NMACRO; t→sym ptr = SYM(t);

pp stack [pp sp].next = t→next ; goto found ;
}
else { token ∗eq ;

eq = SYM(t)→eq ; SYM(t)→use count ++; pp stack [pp sp].next = t→next ;
DBG(dbgexpand , "Expanding ordinary macro %s in line %d\n",

token2string (t), t→line no);
t = pp push (NULL, eq , 0, NULL); continue;

}

5.6 Expanding macros with parameters

Now I come to the most complex case: parametrized macros. When the WEB
invokes a parametrized macro as part of the Pascal code, the macro identifier is
followed by a “(” token, the parameter tokens, and a matching “)” token. The
WEB scanner has also set the link field of the “(” token to point to the “)” token.
The replacement text for the macro is found in the same way as for ordinary macros
above. The replacement text, however, may now contain a “#” token, asking for
another replacement by the parameter tokens. The whole process can be nested
because the parameter tokens may again contain a “#” token. Hence, I need to
store the parameter tokens on the stack as well as a reference to the enclosing
environment. I store a reference to the “(” token on the stack, because from it, I
can get the first token and the last token of the replacement text.

I can write now the code to expand a parametrized macro. To cope with cases
like font(x), where font == type and type(#)=mem[#].hh.b0, I call pp lex to
find the opening parenthesis before pushing the macro expansion and its parameter.
(Note: I expand font as an ordinary macro; then find type which is a parametrized
macro and end up in the “case PMACRO:” below. The “(” token is not the next
token after type because I am still expanding font. Calling pp lex will reach the
end of the expansion, pop the stack, and then find the “(” token.)

〈 special treatment for WEB tokens 78 〉 +≡ (97)

case PMACRO:
{ token ∗open , ∗eq ;

int popen ;

DBG(dbgexpand , "Expanding parameter macro %s in line %d\n",
token2string (t), t→line no);

eq = SYM(t)→eq ; SYM(t)→use count ++; pp stack [pp sp].next = t→next ;
popen = pp lex ();
CHECK(popen ≡ POPEN, "expected (after macro with parameter");
open = pp lval ; pp stack [pp sp].next = open→link→next ; 〈 count macro

parameters 148 〉
t = pp push (NULL, eq , pp sp , open); continue;

}

46 5.7 Parsing Pascal

Whenever a parametrized macro gets expanded, I also count the number of its
parameters storing it in the symbol table. It will help me in section 6.9 to convert
WEB macros to nice C macros.

While traversing the replacement text, I may find a “#” token. In this case,
I find on the pp stack the pointer to the parameter and, in case the parameter
contains again a “#” token, its environment .

〈 special treatment for WEB tokens 78 〉 +≡ (98)

case HASH:
{ token ∗parameter = pp stack [pp sp].parameter ;

int environment = pp stack [pp sp].environment ;

pp stack [pp sp].next = t→next ; t = pp push (NULL, parameter ,
pp stack [environment].environment , pp stack [environment].parameter);

continue;
}

5.7 The function pp parse

The function pp parse is implemented in the file pascal.y which must be processed
by bison (the free version of yacc) to produce pascal.tab.c and pascal.tab.h.
The former contains the definition of the parser function pp parse which I call after
initializing the pp stack in preparation for the first call to pp lex .

〈parse Pascal 99 〉 ≡ (99)

program = first token→link ; pp push (program→link , program→next , 0, NULL);
pp parse (); 〈postprocess PMACRO definitions 69 〉 Used in 2.

The function pp parse occasionally builds a parse tree out of internal nodes for
the Pascal program; this parse tree is then used to accomplish the transformations
needed to turn the Pascal code into C code.

〈 internal node 100 〉 ≡ (100)

struct {
long int value ;

} Used in 7.

Internal nodes are constructed using the function join .

〈 external declarations 4 〉 +≡ (101)

token ∗join (int tag , token ∗left , token ∗right , long int value);

〈 functions 14 〉 +≡ (102)

token ∗join (int tag , token ∗left , token ∗right , long int value)
{ token ∗n = new token (tag);

n→previous = left ; n→next = right ; n→value = value ;
DBG(dbgjoin , "tree: "); DBGTREE(dbgjoin , n); return n;

}

5.8 Pascal’s predefined symbols 47

5.8 Pascal’s predefined symbols

I put predefined function and constant names of Pascal into the symbol table. I omit
predefined symbols that are not used in TEX.
〈 initialize token list 23 〉 +≡ (103)

predefine ("put", PPROCID, 0); predefine ("get", PPROCID, 0);
predefine ("reset", PPROCID, 0); predefine ("rewrite", PPROCID, 0);
predefine ("abs", PFUNCID, 0); predefine ("odd", PFUNCID, 0);
predefine ("eof", PFUNCID, 0); predefine ("eoln", PFUNCID, 0);
predefine ("round", PFUNCID, 0); predefine ("ord", PFUNCID, 0);
predefine ("chr", PFUNCID, 0); predefine ("close", PPROCID, 0);
predefine ("read", PPROCID, 0); predefine ("read_ln", PPROCID, 0);
predefine ("write", PPROCID, 0); predefine ("write_ln", PPROCID, 0);
predefine ("break", PPROCID, 0); predefine ("break_in", PPROCID, 0);
predefine ("erstat", PFUNCID, 0); predefine ("false", PCONSTID, 0);
predefine ("true", PCONSTID, 1);

〈 functions 14 〉 +≡ (104)

int predefine (char ∗name , int tag , int value)
{ int n = sym no(name);

symbol ∗s = symbol table [n];
s→tag = tag ; s→value = value ; return n;

}

49

6 Writing the cweb

6.1 cweb output routines
The basic function to write the cweb file is the function wprint , along with its
simpler cousins wput and wputs , and the more specialized members of the family
wprint int , wprint str , and wprint pre . While most of the work of converting the
visual representation of tokens to cweb is left to the function token2string , the
basic functions take care of inserting spaces after a comma and to prevent adjacent
tokens from running together.

The variables alfanum and comma indicate that the last character written was
alphanumeric or a comma; the variable columns counts the characters on the
current line. The variable spaces counts spaces that still need to be written; these
spaces are suppressed at the end of a line.
〈 global variables 12 〉 +≡ (105)

static int alfanum = 0;
static int comma = 0;
static int columns = 0;
static int spaces = 0;

The low-level output function is wput . It counts spaces and columns; it writes
newlines resetting the space and column count; and it writes any other character
after writing the delayed spaces. It sets the indicators for trailing commas or
alphanumeric characters. The function wputs writes a complete string of characters
using wput .
〈 auxiliary functions 68 〉 +≡ (106)

static void wput (char c)
{ alfanum = comma = false ;

if (c ≡ ’ ’) spaces ++;
else if (c ≡ ’\n’) fputc(’\n’, w), columns = spaces = 0;
else { 〈 output spaces 107 〉

fputc(c, w), columns ++; alfanum = isalnum (c); comma = c ≡ ’,’;
}

}
static void wputs (char ∗str)
{ while (∗str 6= 0) wput (∗str ++); }

If it is known that the next character is neither a space nor a newline, the delayed
spaces are added to the output.

50 6.1 Writing the cweb

〈 output spaces 107 〉 ≡ (107)

if (spaces > 0) { alfanum = comma = false ;
do fputc(’ ’, w), spaces−−, columns ++; while (0 < spaces);

} Used in 106 and 110.

There are three higher level output functions. The most common function is
wprint which is used to output C tokens and takes care of inserting spaces when
necessary to separate tokens and—for a nicer looking output—after commas. Note
that alfanum or comma imply spaces ≡ 0 except after 〈 separate tokens 〉.
〈 separate tokens 108 〉 ≡ (108)

if (alfanum ∨ comma) spaces ++; Used in 109, 110, 131, and 155.

〈 auxiliary functions 68 〉 +≡ (109)

static void wprint (char ∗str)
{ if (isalnum (str [0])) 〈 separate tokens 108 〉

wputs (str);
}

The wprint int function uses fprintf for convenience. No test is necessary to tell
that its output starts and ends with a digit.
〈 auxiliary functions 68 〉 +≡ (110)

static void wprint int (int i)
{ 〈 separate tokens 108 〉
〈 output spaces 107 〉
columns += fprintf (w, "%d", i); alfanum = true ; comma = false ;

}

The wprint str function will escape special characters according to the rules of C.
〈 auxiliary functions 68 〉 +≡ (111)

static void wprint str (char ∗str)
{ wput (’"’), str ++;

while (∗str 6= 0) {
if (str [0] ≡ ’\’’ ∧ str [1] ≡ ’\’’) wput (’\’’), str ++;
else if (str [0] ≡ ’"’ ∧ str [1] ≡ ’"’) wputs ("\\\""), str ++;
else if (str [0] ≡ ’\\’) wputs ("\\\\");
else if (str [0] ≡ ’\’’ ∧ str [1] ≡ 0) wput (’"’);
else if (str [0] ≡ ’"’ ∧ str [1] ≡ 0) wput (’"’);
else if (str [0] ≡ ’"’) wputs ("\\\"");
else wput (str [0]);
str ++;

}
}

When we output a preprocessor directive, it should start at the beginning of a
line, but we may want to keep the indentation, as given by spaces , that the code
had previously.

6.2 Traversing the WEB 51

〈 auxiliary functions 68 〉 +≡ (112)

static void wprint pre (char ∗str)
{ if (columns 6= 0) wput (’\n’);

while (∗str 6= 0) fputc(∗str ++, w);
fputc(’\n’, w); columns = 0; alfanum = comma = false ;

}

Most tokens have their string representation stored in the text field, so I sketch
the function token2string here and describe the details of conversion later.
〈 auxiliary functions 68 〉 +≡ (113)

static char ∗token2string (token ∗t)
{ CHECK(t 6= NULL, "Unable to convert NULL token to a string");

switch (t→tag) {
default:

if (t→text 6= NULL) return t→text ;
else return "";
〈 convert token t to a string 41 〉

}
}

6.2 Traversing the WEB

After these preparations, I am ready to traverse the list of tokens again; this time
not in Pascal order but in the order given in the WEB file because I want the cweb
file to be as close as possible to the original WEB file.

The main loop can be performed by the function wprint to . It traverses the
token list until a given last token is found. Using this function, I can generate the
whole cweb file simply by starting with the first token and terminating with the
last token .
〈 generate cweb output 114 〉 ≡ (114)

〈 rename reserved words 133 〉
wprint to(first token , last token); 〈 generate a header section if requested 227

〉 Used in 2.

The function wprint to delegates all the work to wtoken which in turn uses wprint
and token2string after converting the tokens from WEB to cweb as necessary. Besides
writing out the token, wtoken also advances past the written token and returns a
pointer to the token immediately following it. The function wtoken will be called
recursively. For debugging purposes, it maintains a counter of its nesting level .
〈 functions 14 〉 +≡ (115)

static token ∗wtoken (token ∗t)
{ static int level = 0;

level ++;
DBG(dbgcweb , "wtoken[%d] %s (%s) line %d\n", level , TAG(t),

token2string (t), t→line no);
switch (t→tag)

52 6.3 Writing the cweb

{ 〈 convert t from WEB to cweb 88 〉
default: wprint (token2string (t)); t = t→next ; break;

}
level −−; return t;

}

wprint to is complemented by the function wskip to which suppresses the print-
ing of tokens.
〈 auxiliary functions 68 〉 +≡ (116)

static token ∗wtoken (token ∗t);
static token ∗wprint to(token ∗t, token ∗end)
{ while (t 6= end) t = wtoken (t);

return t;
}
static token ∗wskip to(token ∗t, token ∗end)
{ while (t 6= end) t = t→next ;

return t;
}

6.3 Simple cases of conversion
Quite a few tokens serve a syntactical purpose in Pascal but are simply ignored
when generating C code.
〈 convert t from WEB to cweb 88 〉 +≡ (117)

case CIGNORE: case CTLOCAL: case PLABEL: case PVAR: case PPACKED: case
POF: case ATQM: case ATBACKSLASH:

t = t→next ; break;

The parser will change a tag to CIGNORE by using the IGN macro.
〈 external declarations 4 〉 +≡ (118)

#define IGN (t) ((t)→tag = CIGNORE)

TEX uses the control sequence “@t\2@>” after “forward;”. It needs to be
removed together with the forward declaration, because it does confuse cweb.
〈 convert t from WEB to cweb 88 〉 +≡ (119)

case PFORWARD:
if (t→next→tag ≡ PSEMICOLON) wput (’;’), t = t→next→next ;
else wprint ("forward"), t = t→next ; /∗ as in |forward| ∗/
if (t→tag ≡ ATCTL) t = t→next ;
break;

The meta-comments of WEB are translated to plain C comments they are just a
single line and to #if 0. . . #endif otherwise.
〈 convert t from WEB to cweb 88 〉 +≡ (120)

case METACOMMENT:
{ char ∗c;

6.3 Simple cases of conversion 53

wputs (" /*");
for (c = t→text + 2; c[0] 6= ’@’ ∨ c[1] 6= ’}’; c++) wput (∗c);
wputs ("*/"); t = t→next ;

}
break;

case ATLEFT: wprint pre ("#if 0"); t = t→next ; break;
case ATRIGHT: wprint pre ("#endif"); t = t→next ; break;

Some tokens just need a slight adjustment of their textual representation. In
other cases, the parser changes the tag of a token, for example to PSEMICOLON,
without changing the textual representation of that token. All these tokens are
listed below.
〈 convert t from WEB to cweb 88 〉 +≡ (121)

case PLEFT: case MLEFT: wputs (" /*"); t = t→next ; break;
case RIGHT: wputs ("*/"); t = t→next ; break;
case PSEMICOLON: wputs (";"); t = t→next ; break;
case PCOMMA: wputs (","); t = t→next ; break;
case PMOD: wput (’%’); t = t→next ; break;
case PDIV: wput (’/’); t = t→next ; break;
case PNIL: wprint ("NULL"); t = t→next ; break;
case POR: wputs ("||"); t = t→next ; break;
case PAND: wputs ("&&"); t = t→next ; break;
case PNOT: wputs ("!"); t = t→next ; break;
case PIF: wprint ("if ("); t = t→next ; break;
case PTHEN: wputs (") "); t = t→next ; break;
case PASSIGN: wput (’=’); t = t→next ; break;
case PNOTEQ: wputs ("!="); t = t→next ; break;
case PEQ: wputs ("=="); t = t→next ; break;
case EQEQ: wput (’ ’); t = t→next ; break;
case OCTAL: wprint ("0"); wputs (t→text + 2); t = t→next ; break;
case HEX: wprint ("0x"); wputs (t→text + 2); t = t→next ; break;
case PTYPEINT: wprint ("int"); t = t→next ; break;
case PTYPEREAL: wprint ("double"); t = t→next ; break;
case PTYPEBOOL: wprint ("bool"); t = t→next ; break;
case PTYPECHAR: wprint ("unsigned char"); t = t→next ; break;

The PROGRAM statement of Pascal is no longer needed.
〈 convert t from WEB to cweb 88 〉 +≡ (122)

case PPROGRAM:
if (t→link 6= NULL) t = t→link→next ;
else wputs (t→text), t = t→next ;
break;

I have used above a technique that I will use often in the following code. While
parsing, I use the link field to connect key tokens of certain Pascal constructions.
For example, the parser links the PPROGRAM token to the PSEMICOLON that ends

54 6.4 Writing the cweb

Pascal’s program heading. Using these links, I can find the different parts (including
the intervening WEB tokens) and rearrange or skip them as needed. The above
example also demonstrates that extra care is needed before using the link field:
When the identifier program occurs as part of the documentation, it is not parsed
and its link will be NULL.

Linking tokens is achieved with the following macro which also checks that the
link stays within the same code sequence.
〈 external declarations 4 〉 +≡ (123)

#define LNK (from , to) ((from) ? (seq ((from), (to)), (from)→link = (to)) : 0)

I convert “begin” to “{”. In most cases, I want an “@+” to follow; except of
course if a preprocessor directive is following.
〈 convert t from WEB to cweb 88 〉 +≡ (124)

case PBEGIN: wput (’{’), t = t→next ;
if (¬following directive (t)) wputs ("@+");
break;

〈 auxiliary functions 68 〉 +≡ (125)

static bool following directive (token ∗t)
{ while (true)

if (WDEBUG ≤ t→tag ∧ t→tag ≤ WGUBED) return true ;
else if (t→tag ≡ ATPLUS ∨ t→tag ≡ ATEX ∨

t→tag ≡ ATSEMICOLON ∨ t→tag ≡ NL ∨ t→tag ≡ INDENT)
t = t→next ;

else return false ;
}

After the conversion, the Pascal token “..” will still occur in the file as part
of code between vertical bars. To make it print nicely in the TEX output, it is
converted to an identifier, “dotdot”, that is used nowhere else.
〈 convert t from WEB to cweb 88 〉 +≡ (126)

case PDOTDOT: wprint ("dotdot"); t = t→next ; break;

Using the patch file, I instruct cweave to treat this identifier in a special way and
print it like “ . . ”.

6.4 Pascal division

In some cases build-in functions of Pascal can be replaced by suitably defined macros
in C using the patch file. Using Macros instead of inline replacement has the
advantage that the visual appearance of the original code remains undisturbed. A
not so simple case is the Pascal division.

The Pascal language has two different division operators: “div” divides two
integers and gives an integer result; it can be replaced by “/” in the C language. The
Pascal operator “/” divides integer and real values and converts both operands
to type real before doing so; replacing it simply by the C operator “/” will give
different results if both operands are integer values because in this case C will do

6.5 Identifiers 55

an integer division truncating the result. So expressions of the form “X/Y ” should
be replaced by “X/(double)(Y)” to force a floating point division in C.

Fortunately, all expressions in the denominator have the form total stretch [o],
total shrink [o], glue stretch (r), glue shrink (r), or float constant (n). So no paren-
theses around the denominator are required and inserting a simple (double) after
the / is sufficient. Further, the macro float constant is already a cast to double,
so I can check for the corresponding identifier and omit the extra cast.

〈 global variables 12 〉 +≡ (127)

static int float constant no ;

〈 initialize token list 23 〉 +≡ (128)

float constant no = predefine ("float_constant", ID, 0);

〈 convert t from WEB to cweb 88 〉 +≡ (129)

case PSLASH: wput (’/’);
if (t→next→tag 6= PMACRO ∨ t→next→sym no 6= float constant no) {

wprint ("(double)");
DBG(dbgslash , "Inserting (double) after / in line %d\n", t→line no);

}
t = t→next ; break;

6.5 Identifiers

Before I can look at the identifiers, I have to consider the “@!” token which can
precede an identifier and will cause the identifiers to appear underlined in the index.
The “@!” token needs a special treatment. When I convert Pascal to C, I have to
rearrange the order of tokens and while I am doing so, a “@!” token that precedes
an identifier should stick to the identifier and move with it. I accomplish this by
suppressing the output of the “@!” token if it is followed by an identifier, and insert
it again when I output the identifier itself.

〈 convert t from WEB to cweb 88 〉 +≡ (130)

case ATEX: t = t→next ;
if (t→tag 6= ID ∧ t→tag 6= PID ∧ t→tag 6= PFUNCID ∧
t→tag 6= PDEFVARID ∧ t→tag 6= PDEFPARAMID ∧ t→tag 6= PDEFTYPEID ∧
t→tag 6= OMACRO ∧ t→tag 6= PMACRO ∧ t→tag 6= NMACRO ∧
t→tag 6= CINTDEF ∧ t→tag 6= CSTRDEF ∧ t→tag 6= PDIV ∧
t→tag 6= WDEBUG ∧ t→tag 6= WINIT ∧ t→tag 6= WSTAT) { wputs ("@!");
DBG(dbgcweb , "Tag after @! is %s in line %d\n", tagname (t→tag),

t→line no);
}
break;

Identifier tokens are converted by using their name. I use a simple function to
do the name lookup and take care of adding the “@!” token if necessary.

56 6.6 Writing the cweb

〈 auxiliary functions 68 〉 +≡ (131)

static token ∗wid (token ∗t)
{ 〈 separate tokens 108 〉

if (t→previous→tag ≡ ATEX) wputs ("@!");
wputs (SYM(t)→name); return t→next ;

}

I use this function like this:
〈 convert t from WEB to cweb 88 〉 +≡ (132)

case ID: case PID: case NMACRO: case CINTDEF: case PFUNCID: t = wid (t);
break;

Some identifiers that TEX uses are reserved words in C or loose their special
meaning. One example is the field identifier int. It can not be used in C because
it is a very common (if not the most common) reserved word. I replace it with
i which does not conflict with the variable i because field names have their own
name-space in C. So after I finish scanning the WEB, I change the names of these
identifiers.
〈 rename reserved words 133 〉 ≡ (133)

SYM_PTR("switch")→name = "get_cur_chr";
SYM_PTR("continue")→name = "resume"; SYM_PTR("int")→name = "i";
SYM_PTR("register")→name = "internal_register";
SYM_PTR("exit")→name = "end"; SYM_PTR("free")→name = "is_free";
SYM_PTR("write")→name = "pascal_write";
SYM_PTR("read")→name = "pascal_read";
SYM_PTR("close")→name = "pascal_close";
SYM_PTR("xclause")→name = "else";
SYM_PTR("remainder")→name = "rem"; Used in 114.

6.6 Module names

I have removed newlines and extra spaces from module names; now I have to insert
newlines if the module names are too long.
〈 convert t from WEB to cweb 88 〉 +≡ (134)

case ATLESS: wputs ("@<"); t = t→next ; CHECK(t→tag ≡ TEXT,
"Module name expected instead of %s in line %d",
token2string (t), t→line no);

{ char ∗str = t→text ;
do if (str [0] ≡ ’@’ ∧ str [1] ≡ ’,’) str = str + 2; /∗ control codes are

forbidden in section names ∗/
else if (columns > 80 ∧ isspace (∗str)) wput (’\n’), str ++;
else wput (∗str ++); while (∗str 6= 0);

}
t = t→next ;
if (t→tag ≡ ELIPSIS) wputs ("..."), t = t→next ;

6.8 Replacing the WEB string pool file 57

CHECK(t→tag ≡ ATGREATER, "@> expected instead of %s in line %d",
token2string (t), t→line no);

wputs ("@>"); t = t→next ;
if (t→tag ≡ ATSLASH) t→tag = ATSEMICOLON;
else if (t→tag ≡ PELSE ∨ (t→tag ≡ NL)) wputs ("@;");
break;

Note that I replace an “@/” after the module name by an “@;” Because in
most places this is enough to cause the requested new line and causes the correct
indentation.

6.7 Strings
Multiletter Pascal strings are translated to C strings. Note that the parser occa-
sionally converts CHAR tokens to PSTRING tokens using the pchar2string function.
Single character Pascal or WEB strings are converted to C character constants.
〈 convert t from WEB to cweb 88 〉 +≡ (135)

case PSTRING: wprint str (t→text); t = t→next ; break;
case CHAR: case PCHAR: wput (’\’’);

switch (t→text [1]) {
case ’\’’: wputs ("\\’"); break;
case ’\\’: wputs ("\\\\"); break;
case ’@’: wputs ("@@"); break;
default: wput (t→text [1]); break;
}
wput (’\’’); t = t→next ; break;

6.8 Replacing the WEB string pool file
Multiletter WEB strings need more work because I have to replace the WEB string pool
file. But let’s start with the big simplification in web2w version 1.0: all multiletter
WEB strings are now translated to C string literals. The string pool checksum is
simply replaced by zero, because it is no longer used.
〈 convert t from WEB to cweb 88 〉 +≡ (136)

case STRING: wprint str (t→text); t = t→next ; break;
case ATDOLLAR: wputs ("0"); t = t→next ; break;

The real work starts when TEX assigns WEB strings to variables or passes them
as arguments to functions because you can not simply assign a string literal to a
variable or function parameter of type str number which is simply an integer.
So it seems necessary to change the type of these variables from str number to
char ∗. But changing all of these variables is not a good solution either, because a
large part of TEX still uses string numbers. Therefore web2w will convert variables
to char ∗ type if the majority of operations involve string literals. To obtain
statistical data, the Pascal parser tracks two situations: assignments to a variable
and comparisons for equality with a variable. In both cases, the parser calls the
function pvar string . This function will increment the is string counter of the
variable operand if the other operand is a string and decrements it otherwise.

58 6.8 Writing the cweb

When web2w outputs variable definitions, it will check this counter and convert
variables to type char ∗ if the counter is positive.

〈 external declarations 4 〉 +≡ (137)

extern void pvar string (token ∗id , token ∗val);

〈 functions 14 〉 +≡ (138)

void pvar string (token ∗id , token ∗str)
{ if (id→tag ≡ PID) {

if (str→tag ≡ STRING ∨ (str→tag ≡ PID ∧ str→sym ptr→is string > 0))
id→sym ptr→is string ++;

else if (str→tag ≡ PINTEGER ∧ getval (str) ≡ 0)
; /∗ could go both ways ∗/

else id→sym ptr→is string −−;
DBG(dbgstring , "Variable %s string (%d) marked in line %d\n",

id→sym ptr→name , id→sym ptr→is string , id→line no);
}

}

If the parameter type has changed, the final patch file will adjust functions ac-
cordingly. For example, the function primitive will then enter the literal string
that is now its argument into the string pool and continue with the string number
obtained as before.

There are, however, a few exceptions to the general rule. The two procedures
print and print esc are used very often and sometimes the argument is a string
number and sometimes a string literal. In this case, I would like to call the
augmented print and print esc functions if the argument is a string and the
unchanged functions, renamed as printn and printn esc , otherwise. This change
is accomplished by calling the pstring2n procedure before writing a PCALLID to
the output (see section 6.19). For every procedure call, the parser has put a
representation of the argument list in the up field of the procedure name. The
function pstring2n is then called with the id of the procedure and its up pointer.

〈 auxiliary functions 68 〉 +≡ (139)

static int is string (token ∗arg)
{ if (arg→tag ≡ PSTRING ∨ arg→tag ≡ STRING) return 1;

else if (arg→tag ≡ PID) {
DBG(dbgstring , "Variable %s string (%d) argument in line %d\n",

arg→sym ptr→name , arg→sym ptr→is string , arg→line no);
if (arg→sym ptr→is string > 0) return 1;

}
return 0;

}
static void pstring2n (token ∗id , token ∗arg)
{ if (arg ≡ NULL ∨ arg→tag ≡ PCOLON ∨ arg→tag ≡ CREFID) return;

if (id→sym no ≡ print no ∧ ¬is string (arg)) id→sym no = printn no ;

6.9 Macro and format declarations 59

else if (id→sym no ≡ print esc no ∧ ¬is string (arg))
id→sym no = printn esc no ;

}

Remember that single character strings are routinely converted to character
constants. This conversion is correct for string numbers but not for literal strings.
The parser will undo the conversion by calling pchar2string if such a single character
string is passed to one of the following functions: print , print esc , print nl , and
scan keyword .
〈 external declarations 4 〉 +≡ (140)

void pchar2string (token ∗id , token ∗arg);

〈 functions 14 〉 +≡ (141)

void pchar2string (token ∗id , token ∗arg)
{ if (arg→tag ≡ CHAR ∧

(id→sym no ≡ print no ∨ id→sym no ≡ print esc no ∨
id→sym no ≡ print nl no ∨ id→sym no ≡ scan keyword no))

arg→tag = PSTRING;
id→up = arg ;

}

To check for the respective symbols, web2w uses these variables:
〈 global variables 12 〉 +≡ (142)

static int print no , printn no , print esc no , printn esc no , print nl no ,
scan keyword no ;

The variables are initialized like this:
〈 initialize token list 23 〉 +≡ (143)

printn no = predefine ("printn", PPROCID, 0);
print no = predefine ("print", PPROCID, 0);
print esc no = predefine ("print_esc", PPROCID, 0);
printn esc no = predefine ("printn_esc", PPROCID, 0);
print nl no = predefine ("print_nl", PPROCID, 0);
scan keyword no = predefine ("scan_keyword", PFUNCID, 0);

6.9 Macro and format declarations

Before I output a macro declaration, I first check if the translation has made it
obsolete, either because it just gives a name to a label or because its use count and
scan count both are zero. In this case, I skip it. Otherwise, I output the initial
part of the macro declaration converting macro names to upper case if requested.
From here on, I go different routes for the different types of declarations. Format
declarations follow the same schema but are simpler.
〈 convert t from WEB to cweb 88 〉 +≡ (144)

case ATD:
{ token ∗eq = t→next→next ;

60 6.9 Writing the cweb

if (eq→tag 6= EQEQ) eq = eq→next ; /∗ PMACRO ∗/
DBG(dbgcweb , "Macro definition in line %d\n", t→line no);
if (SYM(t→next)→is label) {
DBG(dbgid , "Eliminating label definition %s in line %d\n",

SYM(t→next)→name , t→line no); t = wskip to(t, eq→link);
}
else if (SYM(t→next)→use count ≡ 0 ∧ SYM(t→next)→scan count ≡ 0) {
DBG(dbgid , "Eliminating unused macro %s in line %d\n",

SYM(t→next)→name , t→line no); t = wskip to(t, eq→link);
}
else { wputs ("@d "), t = t→next ; 〈 convert macro names name to upper

case if requested 222 〉
wprint (SYM(t)→name);
if (t→tag ≡ NMACRO) 〈 convert NMACRO from WEB to cweb 145 〉
else if (t→tag ≡ OMACRO) 〈 convert OMACRO from WEB to cweb 146 〉
else if (t→tag ≡ PMACRO) 〈 convert PMACRO from WEB to cweb 152 〉
else ERROR("Macro name expected in line %d", t→line no);

}
DBG(dbgcweb , "End Macro definition in line %d\n", t→line no); break;

}
case ATF:
{ token ∗eq = t→next→next ;
DBG(dbgcweb , "Format definition in line %d\n", t→line no);
if (SYM(t→next)→scan count ≡ 0) { DBG(dbgid ,

"eliminating unused format definition %s in line %d\n",
SYM(t→next)→name , t→line no); t = wskip to(t, eq→link);

}
else { wputs ("@f "), t = t→next ; wprint (SYM(t)→name);

t = wprint to(eq→next , eq→link);
}
break;

}

WEB features numeric macros that are evaluated to a numeric value by WEB before
they are inserted into the final Pascal program. When converting such macros to
C style macros, the macro postprocessing has taken care of inserting necessary
parentheses. So all that needs to be done here is inserting a space.
〈 convert NMACRO from WEB to cweb 145 〉 ≡ (145)

{ wput (’ ’); t = eq→next ;
} Used in 144.

Ordinary parameterless macros usually map directly to C style macros. But if
they end with a tail call of a macro that has an arg count > 0 they turn into a
macro with parameters.
〈 convert OMACRO from WEB to cweb 146 〉 ≡ (146)

{ token ∗p = tail call (eq);

6.9 Macro and format declarations 61

if (p→tag ≡ PMACRO ∧ SYM(p)→arg count > 0 ∧ SYM(p)→arity > 0) { int
arg count = SYM(p)→arg count ;

SYM(t)→arg count = arg count ;
SYM(t)→arity = SYM(p)→arity ; t→tag = SYM(t)→tag = PMACRO;
wput (’(’),wprint args (0, arg count),wputs (") ");
t = wprint to(eq→next , p→next);
wput (’(’),wprint args (0, arg count),wputs (")");

}
else { wput (’ ’); t = eq→next ;
}

} Used in 144.

Parametrized macros in WEB can use any number of arguments. In C, typical
parametrized macros have a fixed number of arguments, variadic macros being the
exception rather than the rule. Therefore, I count the number of macro arguments
each time I expand a macro. If TEX uses a macro with a variable number of
arguments, I set the counter to −1 and generate a variadic macro.
〈 internal declarations 11 〉 +≡ (147)

#define VARIADIC − 1

WEB uses a single “#” to indicate the parameter position in the replacement text.
To construct macros where multiple parameters are inserted at different places,
TEX uses “tail calls”. An example is TEX’s definition of char_info:
char_info_end(#)==#].qqqq
char_info(#)==font_info[char_base[#]+char_info_end

which is used as
char_info(f)(c)

The char_info macro ends with char_info_end, the tail call, without specifying
the parameter for it. In C, I would prefer the translation
#define char_info(A, B) font_info[char_base[A]+B].qqqq

The following code is used when expanding a parametrized macro for the parser.
It counts the number of parameters substituted for the # sign when the macro gets
expanded—its arity—and the total number of parameters including those that are
passed to a possible tail call—its arg count .
〈 count macro parameters 148 〉 ≡ (148)

{ token ∗p;
int count ;
〈determine the arity 150 〉
〈determine the arg count 151 〉

} Used in 97.

Counting the arity is accomplished with the count arity function. Its parameter
open points to the the OPEN token that follows after the macro name. The function
determines the number of arguments, returning zero if a hash sign is found and the

62 6.9 Writing the cweb

number of arguments can not be determined. We assume that there are no Pascal

comments inside the argument list.
〈 auxiliary functions 68 〉 +≡ (149)

int count arity (token ∗open)
{ int count = 1;

token ∗p;
if (open→next→tag ≡ HASH) return 0;
for (p = open→next ; p 6= open→link ; p = p→next)

if (p→tag ≡ PCOMMA) count ++;
else if (p→tag ≡ POPEN) p = p→link ;

return count ;
}

〈determine the arity 150 〉 ≡ (150)

count = count arity (open);
if (count > 0) {

if (SYM(t)→arity ≡ 0) SYM(t)→arity = count ;
else if (SYM(t)→arity 6= count) SYM(t)→arity = VARIADIC;

}
DBG(dbgmacro , "Counting %s parameters: %d in line %d\n",

SYM(t)→name , count , open→line no); Used in 148.

To determine the arg count of a PMACRO we skip its natural argument and
then count the number of expressions enclosed in parentheses. Between these
parentheses, we might find all kind of “non-Pascal” tokens, which we have to skip.
〈determine the arg count 151 〉 ≡ (151)

p = open→link→next ;
while (p 6= NULL) {

if (p→tag ≡ POPEN) {
if (p→link 6= NULL ∧ p→link→tag ≡ PCLOSE)
{ int c = count arity (p);

if (c ≡ 0) { count = 0; break; }
else count = count + c;
p = p→link→next ;

}
else ERROR(") expected matching (in line %d", p→line no);

}
else if (¬is pascal (p)) p = p→next ;
else break;

}
if (count > 0) {

if (SYM(t)→arg count ≡ 0) SYM(t)→arg count = count ;
else if (SYM(t)→arg count 6= count) SYM(t)→arg count = VARIADIC;
DBG(dbgmacro , "Counting %s arguments: %d in line %d\n",

SYM(t)→name , count , open→link→next→line no);

6.9 Macro and format declarations 63

if (SYM(t)→arg count > ’Z’ − ’A’ + 1)
ERROR("Macro %s with %d>%d arguments found in line %d",

SYM(t)→name , SYM(t)→arg count , ’Z’ − ’A’ + 1,
open→link→next→line no);

} Used in 148.

Now that I know arity and arg count of a macro, I can construct the macro
definition.

〈 convert PMACRO from WEB to cweb 152 〉 ≡ (152)

{ int arity , arg count ;

current macro = SYM(t); current arg = 0;
arity = current macro→arity , arg count = current macro→arg count ;
if (arity ≡ 0) /∗ used only with (#) ∗/
{ DBG(dbgmacro , "Defining parametrized macro %s without \

arguments in line %d\n", SYM(t)→name , t→line no);
wputs ("(X) "); t = eq→next ;

}
else if (arity ≡ VARIADIC) {
DBG(dbgmacro , "Defining variadic macro %s in line %d\n",

SYM(t)→name , t→line no); wput (’(’),wputs ("..."),wputs (") ");
t = eq→next ;

}
else if (arity > arg count)
ERROR("Macro %s with arity %d > argument count %d in line %d",

SYM(t)→name , arity , arg count , t→line no);
else if (arity ≡ arg count) {

wput (’(’),wprint args (0, arg count),wputs (") ");
t = wprint to(eq→next , eq→link);

}
else { token ∗tail ;
DBG(dbgmacro , "Defining macro %s with tail call in line %d\n",

SYM(t)→name , t→line no);
wput (’(’),wprint args (0, arg count),wputs (") ");
eq = current macro→eq ; tail = current macro→type ; t = tail→next ;
while (current arg < arg count) { wprint to(eq→next , tail);

current arg = current arg + current macro→arity ;
if (tail→tag 6= PMACRO) break;
current macro = SYM(tail); eq = current macro→eq ;
tail = tail call (eq);

}
}

} Used in 144.

The preceding code simply uses wprint to to generate the replacement text of
the macro. To be able to expand a HASH token inside the replacement text by

64 6.10 Writing the cweb

the right sequence of macro parameters, the necessary information is kept in two
global variables:
〈 global variables 12 〉 +≡ (153)

static symbol ∗current macro ;
static int current arg = 0;

Using them the HASH token can be expanded.
〈 convert t from WEB to cweb 88 〉 +≡ (154)

case HASH:
if (current macro→arity ≡ 0) wprint ("X");
else if (current macro→arity ≡ VARIADIC) wprint ("__VA_ARGS__");
else wprint args (current arg , current arg + current macro→arity);
t = t→next ; break;

I have used an auxiliary function to generate the parameter lists. The following
function might produce garbage if more than 26 parameters are used. It is an easy
exercise to extend the function to cope with longer parameter lists, but for now we
leave it to the C compiler to produce an error message.
〈 auxiliary functions 68 〉 +≡ (155)

void wprint args (int from , int to)
{ while (true) { 〈 separate tokens 108 〉

wput (’A’ + from); from ++;
if (from ≥ to) break;
else wput (’,’);

}
}

6.10 Macro calls

Macro calls may occur everywhere in the program including the replacement text
of an other macro. The following code handles all such calls, replacing sequences of
parameter lists by one long “flat” parameter list. Inside a parameter list, the top-
level PCOMMA tokens separate the parameters. It is important to ignore additional
commas that are at lower levels inside of parentheses. Between parameter lists there
must be no other Pascal tokens, only non-Pascal tokens are allowed.
〈 convert t from WEB to cweb 88 〉 +≡ (156)

case PMACRO: case OMACRO:
{ int count = SYM(t)→arg count ;

token ∗macro = t;
t = wid (t);
if (count > 0 ∧ t→tag ≡ POPEN) { wput (’(’);

while (count > 0 ∧ t→tag ≡ POPEN) { token ∗p = t→next ;
count −−;
while (p 6= t→link) {

if (p→tag ≡ PCOMMA) count −−;

6.11 Labels 65

else if (p→tag ≡ HASH ∧ current macro→arity > 0)
count = count − (current macro→arity − 1);

if (p→tag ≡ POPEN) p = wprint to(p, p→link);
else p = wtoken (p);

}
t = t→link ;
if (t→tag 6= PCLOSE)
ERROR(") expected in macro call in line %d", t→line no);

t = t→next ;
if (count > 0) { wput (’,’);

while (¬is pascal (t)) t = wtoken (t);
if (t→tag 6= POPEN)
ERROR("(expected to continue macro %s(%d) par\

ameters in line %d", SYM(macro)→name ,
SYM(macro)→arg count , t→line no);

}
}
wput (’)’);

}
}
break;

6.11 Labels

In C, labels are identifiers and labels do not need a declaration. So in the parser, I
mark the tokens belonging to a label declaration with the tag CIGNORE and they
will be ignored when the cweb file is written.

In most cases the labels in TEX are numeric macros. In this case, the parser will
change the tag from NMACRO to CLABEL and set the is label flag. To complete the
bookkeeping, it decrements the scan count of the numeric macro. As seen before,
the declaration of a numeric macro with is label ≡ 1 will be removed.

In the goto count of the label, the parser maintains a count of the goto’s that
reference it. If transformations remove all goto’s, it is also possible to remove the
target label. The whole bookkeeping is achieved by calling the function clabel at
appropriate places in the parser.
〈 external declarations 4 〉 +≡ (157)

extern void clabel (token ∗t, int reference);

〈 functions 14 〉 +≡ (158)

void clabel (token ∗t, int reference)
{ if (t→tag ≡ NMACRO) { t→tag = CLABEL; SYM(t)→is label = 1; }

if (t→tag ≡ CLABEL) { SYM(t)→goto count += reference ;
SYM(t)→scan count −−;

}
else if (t→tag ≡ PRETURN) SYM(t)→goto count += reference ;
else {

66 6.11 Writing the cweb

if (t→tag ≡ PINTEGER) t→tag = CLABELN;
return;

}
DBG(dbgreturn , "Using label %s (%d) in line %d\n", SYM(t)→name ,

SYM(t)→goto count , t→line no);
}

A very special case is the return macro of TEX; it is defined as goto exit . I
need to deal with it in a special way, because it usually follows the assignment of a
function return value and therefore can be converted to a C return statement. In
the scanner, I create the PRETURN token and set its symbol number to the exit
symbol.
〈 external declarations 4 〉 +≡ (159)

extern int exit no ;
#define TOK_RETURN add token (PRETURN)→sym no = exit no

〈 global variables 12 〉 +≡ (160)

int exit no ;

〈 initialize token list 23 〉 +≡ (161)

exit no = sym no("exit");

To reflect the local nature of exit labels, I replace the symbol number by the
symbol pointer before feeding a PRETURN token to the parser.
〈 special treatment for WEB tokens 78 〉 +≡ (162)

case PRETURN: t→sym ptr = SYM(t); pp stack [pp sp].next = t→next ; goto
found ;

The output of the C-style labels is done with the following code. In the case of
a CLABEL, I check the goto count and eliminate unused labels; I also check for a
plus sign and a second number (remember labels in Pascal are numeric values) and
if found append the number to the label name. In the rare case where the label
is indeed a plain integer, the tag is CLABELN and I add the prefix “label” to the
numeric value to make it a C identifier. The remaining cases are TEX’s use of the
labels final end and return.
〈 convert t from WEB to cweb 88 〉 +≡ (163)

case CLABEL:
if (t→sym ptr→goto count ≤ 0) { t = t→next ;

if (t→tag ≡ PPLUS) t = t→next→next ;
if (t→tag ≡ PCOLON) { t = t→next ;

if (t→tag ≡ CSEMICOLON) t = t→next ;
}

}
else { wprint (SYM(t)→name); t = t→next ;

if (t→tag ≡ PPLUS) { t = t→next ; wputs (t→text); t = t→next ; }
}

6.13 Variable declarations 67

break;
case CLABELN: wprint ("label"); wputs (t→text); t = t→next ; break;
case PEXIT: wprint ("exit(0)"); t = t→next ; break;
case PRETURN: wprint ("goto end"); t = t→next ; break;

6.12 Constant declarations
The PCONST symbol occurs in TEX only once: before 〈Constants in the outer
block 〉. We use it to make the whole section an enumeration type.
〈 convert t from WEB to cweb 88 〉 +≡ (164)

case PCONST: wprint ("enum {"); t = wtoken (t→next); wprint ("};"); break;

In TEX there are only declarations of integer constants the only exception being
the definition of the pool name string. The parser changes the pool name token
into a CSTRDEF token; all the other identifiers are changed into CINTDEF tokens.
I use the opportunity to replace the definition of pool name by the definition of
empty string (see section 6.8).
〈 convert t from WEB to cweb 88 〉 +≡ (165)

case CSTRDEF: t = t→link→next ;
while (t→tag ≡ NL) { t = t→next ;

if (t→tag ≡ INDENT) t = t→next ;
if (t→tag ≡ PLEFT) t = t→link→next ;
if (t→tag ≡ ATCTL) t = t→next ;

}
wputs ("@!empty_string=256 "
"/*the empty string follows after 256 characters*/\n\n"); break;

To add the empty string to the string pool, the ctex.patch file replaces the section
〈Read the other strings from the TEX.POOL file . . . 〉 by a simple make string ().

6.13 Variable declarations
When I parse variable declarations, I replace the tag of the first variable identifier
by PDEFVARID and link all the variables following it together. The last variable is
linked to the token separating the identifiers from the type, a PCOLON token which
the parser has changed to a CIGNORE token. The former PCOLON token itself is
then linked to the PSEMICOLON that terminates the variable declaration. In the
special case of array variables, I have to insert the variable identifiers inside the
type definition. To accomplish this, I set the global variable varlist to point to the
PDEFVARID token. If the type starts with the PARRAY token (see next section)
the variables will be printed as part of the type. If not, I continue after printing
the type with whatever is left from this list. Note the special precautions taken to
map subrange types to the different C integer types. I deal with this problem in
section 6.14 and 6.17.
〈 global variables 12 〉 +≡ (166)

static token ∗varlist = NULL;

Using this information I can convert the variable declaration.

68 6.14 Writing the cweb

〈 convert t from WEB to cweb 88 〉 +≡ (167)

case PDEFVARID:
DBG(dbgcweb , "Converting variable list in line %d\n", t→line no);
varlist = t;
{ 〈determine the type and storage class 168 〉

if (¬is extern ∧ is global) wprint ("static");
〈print the variable’s type 169 〉
DBG(dbgcweb , "Finished variable type in line %d\n", t→line no);
while (varlist→tag ≡ PDEFVARID ∨ varlist→tag ≡ PID) { wid (varlist);

varlist = wprint to(varlist→next , varlist→link);
}
t = t→link ;

}
DBG(dbgcweb , "Finishing variable list in line %d\n", t→line no);
break;

The following loop checks the list of variables for the requested type and storage
class.

〈determine the type and storage class 168 〉 ≡ (168)

symbol ∗s;
int is extern = 0, string type = 0, is int = 0, is global = 0;

do { s = t→sym ptr ; is global |= s→is global ; is extern |= s→is extern ;
is int |= s→is int ;
if (s→is string > 0) {
DBG(dbgstring , "Variable %s string (%d) defined in line %d\n",

s→name , s→is string , t→line no); string type = 1;
}
t = t→link ;

} while (t→tag ≡ PID); Used in 167 and 230.

After the previous loop has traversed the list, t points to the colon preceding the
type. If the type is not a string or an integer, it is printed based on t.

〈print the variable’s type 169 〉 ≡ (169)

if (string type) wprint ("char *");
else if (is int) wprint ("int");
else wprint to(t, t→link); Used in 167 and 230.

6.14 Types
Pascal type declarations start with the keyword type, then follows a list of dec-
larations each one starting with a type identifier. While parsing Pascal, I change
the tag of the identifier being defined to PDEFTYPEID. I link this token to the first
token of the type, and link the first token of the type to the semicolon terminating
the type. When I encounter these tags now a second time, I can convert them into
C typedef ’s.

6.14 Types 69

〈 convert t from WEB to cweb 88 〉 +≡ (170)

case PDEFTYPEID:
{ token ∗type name = t;

token ∗type = type name→link ;

DBG(dbgcweb , "Defining type %s in line %d\n", token2string (t),
t→line no); wprint ("typedef "); t = wprint to(type , type→link);

wprint (token2string (type name)); break;
}

The above code just uses wprint to to print the type itself. Some types need a
little help to print correctly. For instance, subrange types are converted by changing
the PEQ token after the new type identifier to a CTSUBRANGE token, with an up -
link to the parse tree for the subrange. Since C does not have this kind of subrange
types, I approximate them by the standard integer types found in stdint.h. Since
mixing signed and unsigned types in expression can create problems in C, I prefer
the signed types over the unsigned type if possible.

〈 convert t from WEB to cweb 88 〉 +≡ (171)

case CTSUBRANGE:
{ long int lo = t→up→previous→value ;

long int hi = t→up→next→value ;

DBG(dbgcweb , "Defining subrange type %ld..%ld in line %d\n", lo , hi ,
t→line no);

if (INT8_MIN ≤ lo ∧ hi ≤ INT8_MAX) wprint ("int8_t");
else if (0 ≤ lo ∧ hi ≤ UINT8_MAX) wprint ("uint8_t");
else if (INT16_MIN ≤ lo ∧ hi ≤ INT16_MAX) wprint ("int16_t");
else if (0 ≤ lo ∧ hi ≤ UINT16_MAX) wprint ("uint16_t");
else if (INT32_MIN ≤ lo ∧ hi ≤ INT32_MAX) wprint ("int32_t");
else if (0 ≤ lo ∧ hi ≤ UINT32_MAX) wprint ("uint32_t");
else
ERROR("unable to convert subrange type %ld..%ld in line %d\n",

lo , hi , t→line no);
t = t→link ; break;

}
case CTINT: wprint ("int"); t = t→link ; break;

To set up -links in the parser, I use the following macro:

〈 external declarations 4 〉 +≡ (172)

#define UP (from , to) ((from)→up = (to))

Record types get converted into C structures; the variant parts of records become
C unions.

〈 convert t from WEB to cweb 88 〉 +≡ (173)

case PRECORD:
{ DBG(dbgcweb , "Converting record type in line %d\n", t→line no);

wprint ("struct { "); t = wprint to(t→next , t→link);

70 6.14 Writing the cweb

DBG(dbgcweb , "Finished record type in line %d\n", t→line no);
wput (’}’);
if (t→tag 6= NL) wput (’ ’);
break;

}
case CUNION:
{ DBG(dbgcweb , "Converting union type in line %d\n", t→line no);

wprint ("union { "); t = wprint to(t→next , t→link); wprint ("};");
DBG(dbgcweb , "Finished union type in line %d\n", t→line no); break;

}

The conversion of the field declarations of a record type assumes that the Pascal

parser has changed the first PID token to a PDEFVARID token and linked it to the
following PCOLON token; then linked the PCOLON token to the PSEMICOLON or
PEND token that follows the type.

Arrays also need special conversion. Pascal arrays specify a subrange type while C

arrays are always zero based and specify a size. Common to both is the specification
of an element type. TEX does not use named array types. Array types only occur
in the definition of variables.

I link the PARRAY token to the PSQOPEN token, which I link to either the
PDOTDOT token or the type identifier, which I link to the PSQCLOSE token, which
I link to the POF token, which is finally linked to the PSEMICOLON following the
element type.

The up pointer of the PARRAY token points to the parse tree for the subrange
of the index type.
〈 convert t from WEB to cweb 88 〉 +≡ (174)

case PARRAY:
if (t→up ≡ NULL) /∗ happens for example code which is not part of the

program ∗/
wputs (t→text), t = t→next ;

else { token ∗from = t→link ;
token ∗index = from→link ;
token ∗to = index→link ;
token ∗element type = to→link ;
token ∗subrange = t→up ;
long int lo , hi ;
int zero based ;
if (subrange→tag ≡ PID) subrange = subrange→sym ptr→type ;
lo = subrange→previous→value ; hi = subrange→next→value ;
zero based = (subrange→previous→tag ≡ PINTEGER ∧ lo ≡ 0) ∨

subrange→previous→tag ≡ PTYPECHAR;
DBG(dbgarray , "Converting array[%ld..%ld] type in line %d\n",

lo , hi , t→line no);
t = wprint to(element type , element type→link);
while (true) { CHECK(varlist 6= NULL,

"Nonempty variable list expected in line %d",

6.14 Types 71

varlist→line no);
DBG(dbgarray , "Generating array variable %s in line %d\n",

varlist→sym ptr→name , varlist→line no);
wid (varlist); varlist→sym ptr→is zero based = zero based ;
if (¬zero based) wput (’0’); /∗ add a zero to the array name ∗/
wput (’[’); 〈 generate array size 175 〉 wput (’]’);
if (¬zero based) /∗ now I need the array with the appropriate offset ∗/
{ DBG(dbgarray ,

"Generating array pointer %s[%s=%ld..] in line %d\n",
varlist→sym ptr→name , token2string (from→next), lo ,
varlist→line no); wputs (", *const "); wid (varlist);

wputs (" = "); wid (varlist),wput (’0’); 〈 generate array offset 176 〉;
}
varlist = varlist→link ;
if (varlist→tag ≡ PDEFVARID ∨ varlist→tag ≡ PID) wput (’,’);
else break;

}
DBG(dbgarray , "Finished array type in line %d\n", t→line no);

}
break;

〈 generate array size 175 〉 ≡ (175)

{ int hi , size ;

hi = generate constant (subrange→next , 0, 0);
size = generate constant (subrange→previous , ’-’, hi); size = size + 1;
if (size < 0) wput (’-’),wprint int (−size);
else if (size > 0) {

if (subrange→previous→tag 6= PTYPECHAR∧ (subrange→previous→tag 6=
PINTEGER ∨ subrange→next→tag 6= PINTEGER)) wput (’+’);

wprint int (size);
}

} Used in 174.

〈 generate array offset 176 〉 ≡ (176)

{ int lo = generate constant (subrange→previous , ’-’, 0);

if (lo < 0) wput (’-’),wprint int (−lo);
else if (lo > 0) wput (’+’),wprint int (lo);

} Used in 174.

I use the following function to generate a symbolic expression for the given
parse tree representing a constant integer value. The expression contains only plus
or minus operators. Parentheses are eliminated using the sign parameter. The
function returns the numeric value that needs to be printed after all the symbolic
constants, accumulating literal constants on its way.

72 6.15 Writing the cweb

〈 auxiliary functions 68 〉 +≡ (177)

static long int generate constant (token ∗t, char sign , long int value)
{

if (t→tag ≡ PTYPECHAR ∨ t→tag ≡ PINTEGER) {
if (sign ≡ ’-’) return value − t→value ;
else return value + t→value ;

}
else if (t→tag ≡ NMACRO ∨ t→tag ≡ PCONSTID) {

if (sign 6= 0) wput (sign);
wprint (token2string (t→previous)); return value ;

}
if (t→tag ≡ PPLUS) {

if (t→previous 6= NULL)
value = generate constant (t→previous , sign , value);

if (sign ≡ 0) sign = ’+’;
return generate constant (t→next , sign , value);

}
if (t→tag ≡ PMINUS) {

if (t→previous 6= NULL)
value = generate constant (t→previous , sign , value);

if (sign ≡ 0 ∨ sign ≡ ’+’) sign = ’-’;
else sign = ’+’;
return generate constant (t→next , sign , value);

}
else ERROR("Unexpected tag %s while generating a co\

nstant expression in line %d", TAG(t), t→line no);
}

6.15 Files

The Pascal idea of a file, let’s say “fmt file : file of memory word ”, is a combination
of two things: the file itself and the file’s buffer variable capable of holding one data
item, in this case one memory word . In C, I can simulate such a Pascal file by a
structure containing both: FILE ∗f , the file in the C sense; and memory word d,
the data item.
〈 convert t from WEB to cweb 88 〉 +≡ (178)

case PFILE:
{ DBG(dbgcweb , "Converting file type in line %d\n", t→line no);

wprint ("struct {@+FILE *f;@+"); t = wprint to(t→next , t→link);
wprint ("@,d;@+} ");
DBG(dbgcweb , "Finished file type in line %d\n", t→line no); break;

}

As I will show in section 6.19, it is also convenient that TEX always passes
files, and only files, by reference to functions or procedures. Now I can transcribe
get (fmt file) into fread (&fmt file .d, sizeof (memory word), 1, fmt file .f). I put

6.16 Structured statements 73

these “rewrite rules” as macros in the patch file; it has the advantage that the
rewriting does not disturb the visual appearance of the program code.

Access to the file’s buffer variable, in Pascal written as fˆ becomes simply f.d.

〈 convert t from WEB to cweb 88 〉 +≡ (179)

case PUP: wputs (".d"); t = t→next ; break;

6.16 Structured statements

Some of the structured statements are easy to convert. For example the if state-
ment just needs an extra pair of parentheses around the controlling expression.
These small adjustment are made when dealing with the PIF and PTHEN token.

The while statement is similarly simple, but the PDO token may also be part of
a for-loop. So the parser links the PWHILE token to the PDO token to insert the
parentheses.

〈 convert t from WEB to cweb 88 〉 +≡ (180)

case PWHILE: wprint ("while ");
if (t→link 6= NULL) { wput (’(’); t = wprint to(t→next , t→link); wputs (") ");
}
t = t→next ; break;

Other structured statements need more work.
Let’s start with the Pascal case statement. Adding parentheses around the

controlling expression follows the same schema that was just used for the while
statement: the PCASE token is linked to the corresponding POF token while parsing.
The body of the switch statement is always a compound statement so an opening
brace is added.

〈 convert t from WEB to cweb 88 〉 +≡ (181)

case PCASE:
if (t→link ≡ NULL) { wprint (t→text); t = t→next ; }
else
{ wprint ("switch ("); t = wprint to(t→next , t→link); wputs (") {"); }
break;

The complications of the case statement start with the case labels. Pascal requires
a comma separated list of labels followed by a colon, a statement, and a semicolon;
C needs the keyword “case” preceding every single label, followed by a colon, and
a statement list which usually ends with “break;”.

When faced with this problem, I tried a new strategy: inserting new tokens
while parsing. I insert a CCASE token before each Pascal case label and replace the
PCOMMAs between labels by CCOLONs. While it worked quite well, I still wished,
I could have solved the problem without modifying the token list.

To insert the CCASE tokens, the parser uses the function winsert case .

〈 external declarations 4 〉 +≡ (182)

extern token ∗winsert case (token ∗t, token ∗s);

74 6.16 Writing the cweb

There are a few spots where inserting the CCASE token just before the first token
of the label produces rather unsightly results. For example when TEX processes
a ligature or kern command, TEX uses case labels of the form qi (1), qi (5): . . .
where the macro qi (A) is defined as A + min quarterword . The pp lex function
will expand the qi macro feeding 1+min quarterword , 5+min quarterword : . . . to
the parser. Inserting the case just before 1 and 5, as it was done in web2w version
0.4, produces qi (case 1): qi (case 5): . . . which, by the way, is correct C code. A
situation like this occurs only if the label starts in the same code sequence as the
comma and the colon is nested inside a macro as a macro parameter. To solve the
problem, both tokens, the start of the label and the comma, respectively colon, is
passed to the function winsert case . A simple loop now moves the insertion point
backward until the enclosing macro is found.
〈 functions 14 〉 +≡ (183)

static token ∗winsert after (token ∗t, int tag , char ∗text)
{ token ∗n;
DBG(dbgstmt , "Inserting token %s after %s in line %d\n",

tagname (tag), TAG(t), t→line no); n = new token (tag);
n→next = t→next ; n→next→previous = n; n→previous = t; t→next = n;
n→sequence no = t→sequence no ; n→line no = t→line no ; n→text = text ;
return n;

}
token ∗winsert case (token ∗t, token ∗s)
{ if (t ≡ NULL) return NULL; /∗ no need to insert anything ∗/

if (t→sequence no ≡ s→sequence no ∧ t→pp sp < s→pp sp) {
DBG(dbgstmt , "Moving case in line %d (%d/%d!=%d)\n", t→line no ,

t→sequence no , t→pp sp , s→pp sp);
while (t→previous→sequence no ≡ s→sequence no ∧ t→tag 6= PMACRO)

t = t→previous ;
}
return winsert after (t→previous , CCASE, "case ");

}

Further, the parser replaces the semicolons separating the Pascal case elements
by a CBREAK token.
〈 convert t from WEB to cweb 88 〉 +≡ (184)

case CBREAK:
if (t→previous→tag 6= PSEMICOLON ∧ t→previous→tag 6=

CSEMICOLON ∧ t→previous→tag 6= PEND) wputs ("@;");
if (¬dead end (t→up , t→line no)) wprint ("@+break;");
t = t→next ; break;

The semicolon that might be necessary before the “break” is inserted using a
general procedure described in section 6.18.

TEX often terminates the statement following the case label with a goto state-
ment. In this case of course it looks silly to add a break statement. I can test this
by calling the dead end function

6.16 Structured statements 75

〈 auxiliary functions 68 〉 +≡ (185)

static int dead end (token ∗t, int line no)
{ DBG(dbgbreak , "Searching for dead end in line %d:\n", line no);

while (true) { DBG(dbgbreak , "\t%s\n", TAG(t));
if (t→tag ≡ PGOTO∨ t→tag ≡ PEXIT∨ t→tag ≡ CPROCRETURN) return

true ;
else if (t→tag ≡ PCOLON) t = t→next ;
else if (t→tag ≡ PBEGIN) t = t→previous ;
else if (t→tag ≡ PSEMICOLON ∨ t→tag ≡ CCASE) {

if (t→next→tag ≡ CEMPTY) t = t→previous ;
else t = t→next ;

}
else return false ;

}
}

The “others” label can be replaced by “default”.

〈 convert t from WEB to cweb 88 〉 +≡ (186)

case POTHERS: wprint ("default:"); t = t→next ; break;

I suspect that a case list always ends with either a semicolon or POTHERS without
a semicolon. It could be better to generate also a break statement at the end of the
last case element—especially if the order of cases gets rearranged by rearranging
or adding modules.

Finally I convert the repeat-until statement. The “repeat” becomes “do {”
and the “until” becomes “} while”. All that is left is to enclose the expression
following the “until” in a pair of parentheses and add a ¬ operator. The opening
parenthesis follows the “while”; but where should the closing parenthesis’s go?
Here I use the fact that in TEX the condition after the “until” is either followed
directly by a semicolon, an else, or a new section.

〈 convert t from WEB to cweb 88 〉 +≡ (187)

case PREPEAT: wprint ("@/do@+{"); t = t→next ; break;
case PUNTIL:
{ int sequence no , line no ;

token ∗end ;

wputs ("}@+ while (!("); sequence no = t→sequence no ;
line no = t→line no ; end = t→next ;
while (true) {

if (end→tag ≡ PSEMICOLON ∨ end→tag ≡ CSEMICOLON ∨ end→tag ≡
PELSE) break;

else if (end→tag ≡ ATSPACE ∨ end→tag ≡ ATSTAR) {
end = wback (end)→next ; break;

}
end = end→next ;

}

76 6.17 Writing the cweb

CHECK(sequence no ≡ end→sequence no ,
"until: end of expression not found in line %d", line no);

t = wprint to(t→next , end); wputs ("))"); break;
}

6.17 for-loops
To convert the for statement, I link the PFOR token to the PTO or PDOWNTO

token respectively, which is then linked to the PDO token. The rest seems simple
but it hides a surprising difficulty.
〈 convert t from WEB to cweb 88 〉 +≡ (188)

case PFOR:
{ token ∗id = t→next ;

token ∗to = t→link ;
if (to ≡ NULL) { wprint ("for"); t = t→next ; break;
}
wprint ("for ("); wprint to(id , to); wputs ("; "); wid (id);
if (to→tag ≡ PTO) wputs ("<=");
else if (to→tag ≡ PDOWNTO) wputs (">=");
else ERROR("to or downto expected in line %d", to→line no);
wprint to(to→next , to→link); wputs ("; "); wid (id);
if (to→tag ≡ PTO) wputs ("++");
else wputs ("--");
wputs (") "); t = to→link→next ; break;

}

The above code checks that there is actually a link to the PTO token. This link
will exist only if the for-loop was parsed as part of the Pascal program; it will not
exists if the code segment was just part of an explanation (see for example TEX’s
section 823). In this case, I need to deal with the PTO and PDO separately.

Given a Pascal variable “var i: 0..255;” the for-loop “for i : = 255 downto 0
do. . . ” will work as expected. If I translate the variable definition to “uint8 t i;”
the translated for-loop “for (i = 255; i ≥ 0; i−−). . . ” will not terminate because
the loop control variable will never be smaller than 0, instead it will wrap around.
If the variable i is used in such a for-loop, I should define it simply as “int i;”.

The first step is the analysis of for-loops in the Pascal parser. Here, I call the
function for loop variable with three parameters: id , the loop control variable;
line no , the line number for debugging purposes; value , the value of the limit
terminating the loop; and direction , indicating the type of loop. For the direction ,
I distinguish three cases: +1 for an upward loop, −1 for a downward loop, and 0
if the loop’s limit is a variable.

While web2w version 0.4 went a long way to decide whether the loop variables
subrange type needs to be promoted to an int, version 1.0 now simply converts all
such variables to an int.
〈 external declarations 4 〉 +≡ (189)

extern void for loop variable (token ∗id , int line no , int to , int direction);

6.18 Semicolons 77

〈 functions 14 〉 +≡ (190)

void for loop variable (token ∗id , int line no , int to , int direction)
{ SYM(id)→is int = 1; DBG(dbgstmt , "\tLoop control variable %s: "

"limit %d, direction %d in line %d\n",
SYM(id)→name , to , direction , line no);

}

6.18 Semicolons
In C, the semicolon is used to turn an expression, for example an assignment,
into a statement; while in Pascal semicolons are used to separate statements in a
statement sequence. This difference is important, because C will need a semicolon
in certain cases, for example preceding an “else” or a “}”, where Pascal must not
have one.

The simpler case is the semicolon that in Pascal quite frequently follows an end.
In C this semicolon often does no harm (it indicates an empty statement), but
looks kind of strange. In other cases, for example following a procedure body, it
must be eliminated. So I test for it and eliminate it wherever I find it.

〈 convert t from WEB to cweb 88 〉 +≡ (191)

case PEND: wputs ("} "), t = t→next ;
if (t→tag ≡ PSEMICOLON) t = t→next ;
break;

Now let’s turn to the more difficult case where C needs a semicolon and Pascal

does not have one: preceding an “else”, at the end of a case element, and at the
end of a statement sequence (preceding an “end” or “until”). Adding a semicolon
directly before such an “else” would in many cases not look very nice. For instance
when the code preceding it is in a different module. The semicolon should instead
follow immediately after the last preceding Pascal token. I insert a CSEMICOLON

token just there using the function wsemicolon . The function has two parameters:
t, the token that might require a preceding semicolon; and p, the pointer to the
parse tree preceding the token pointed to by t.

I first check the parse tree whether a semicolon is indeed needed, and if so, I
search for the proper place to insert the semicolon. The function wneeds semicolon
descends into the parse tree, finds its rightmost statement, and determines whether
it needs a semicolon. The function wback searches backward to the earliest token
that is relevant for the C parser.

The situation is slightly different for ctangle. Its pattern matching algorithm
does not work good, if the material, for example preceding an else, does not look
like a statement, for example because the closing semicolon is hidden in a module
or a macro. In these cases it is appropriate to insert a “@;” token. I do this by
looking at the token preceding the “else”, skipping over index entries, newlines,
indents and such stuff, until finding the end of a module, or macro and insert the
“@;” there.

78 6.18 Writing the cweb

〈 functions 14 〉 +≡ (192)

bool wneeds semicolon (token ∗p)
{ while (p 6= NULL) {

switch (p→tag) {
case PCASE: case PBEGIN: case CIGNORE: return false ;
case PSEMICOLON: case CCASE: case PELSE: p = p→next ; continue;
case PIF: case PWHILE: case PFOR: case PCOLON:

p = p→previous ; continue;
case PASSIGN: case PFUNCID: case PCALLID: case PREPEAT:
case PRETURN: case CRETURN: case CPROCRETURN: case PGOTO:
case PEXIT: case CEMPTY: default: return true ;
}

}
return false ;

}
void wsemicolon (token ∗p, token ∗t)
{ t = wback (t);

if (t→tag 6= PSEMICOLON ∧ t→tag 6= CSEMICOLON ∧ t→tag 6= PEND) {
if (wneeds semicolon (p)) {
DBG(dbgsemicolon , "inserting ; in line %d\n", t→line no);
if (t→next→tag ≡ ATSEMICOLON) { t→next→tag = CSEMICOLON;

t→next→text = ";";
}
else winsert after (t, CSEMICOLON, ";");

}
else if (t→next→tag 6= ATSEMICOLON ∧ t→next→tag 6= PSEMICOLON)
{ DBG(dbgsemicolon , "inserting @; in line %d\n", t→line no);
winsert after (t, ATSEMICOLON, "@;");

}
}

}

In procedures, I eliminate a final “exit :” because I have replaced “goto exit”
by “return”.

The function wend is called by the parser after a procedure body is parsed. It
passes a pointer p to the body’s parse tree and a pointer t to the terminating PEND

token.

〈 functions 14 〉 +≡ (193)

void wend (token ∗p, token ∗t)
{

if (p→tag ≡ PSEMICOLON∧p→next→tag ≡ PCOLON∧p→next→next→tag ≡
CEMPTY ∧ p→next→previous→tag ≡
CLABEL ∧ p→next→previous→sym no ≡ exit no) {

token ∗label = p→next→previous ;

6.19 Procedure definitions 79

DBG(dbgreturn , "Trailing exit: found preceding line %d\n",
t→line no); label→tag = CIGNORE;

SYM(label)→goto count = −1000; CHECK(label→next→tag ≡ PCOLON,
"Expected colon after label in line %d\n", label→line no);

label→next→tag = CIGNORE; p→next→tag = CIGNORE;
}
else DBG(dbgreturn , "No trailing exit: found preceding line %d\n",

t→line no);
}

〈 external declarations 4 〉 +≡ (194)

extern void wsemicolon (token ∗p, token ∗t);
extern void wend (token ∗p, token ∗t);

The inserted semicolons have the tag CSEMICOLON. These tokens are printed
but—and this is new—hidden from the Pascal parser. This idea might be useful
also for other inserted tokens.
〈 convert token t to a string 41 〉 +≡ (195)

case CSEMICOLON: return ";";

〈 special treatment for WEB tokens 78 〉 +≡ (196)

case CSEMICOLON: t = t→next ; continue;

6.19 Procedure definitions
While parsing, I link the PPROCEDURE token to the PSEMICOLON or POPEN

following the procedure name. The PSEMICOLON following the heading is always
changed to a CIGNORE. After these preparations, this is sufficient to get started
with the procedure heading:
〈 convert t from WEB to cweb 88 〉 +≡ (197)

case PPROCEDURE:
DBG(dbgcweb , "Converting procedure heading in line %d\n", t→line no);
if (SYM(t) ≡ NULL ∨ SYM(t)→is extern ≡ 0) wprint ("static");
〈print the procedure heading 198 〉
break;

〈print the procedure heading 198 〉 ≡ (198)

{ wprint ("void"); t = wprint to(t→next , t→link);
if (t→tag 6= POPEN) wputs ("(void)");
else t = wprint to(t, t→link→next);

} Used in 197 and 230.

If the procedure heading features a parameter list, the parser has converted the
parameter identifiers to either PDEFPARAMID or PDEFREFID tokens, linked the
identifiers together with the final link pointing to the PCOLON preceding the type,
and it linked the PCOLON to the PSEMICOLON or PCLOSE following the type. This

80 6.20 Writing the cweb

information is sufficient to convert the parameter list. It is handled similar to a
variable declaration. The type identifier, however, needs to be repeated for each
parameter in the list.
〈 convert t from WEB to cweb 88 〉 +≡ (199)

case PDEFPARAMID: case PDEFREFID:
{ token ∗varlist = t, ∗type = t→link ;
DBG(dbgcweb , "Converting parameter list in line %d\n", t→line no);
while (type→tag ≡ PDEFPARAMID ∨ type→tag ≡ PDEFREFID)

type = type→link ;
while (true) { wprint to(type , type→link);

if (varlist→tag ≡ PDEFREFID) wputs (" *");
wid (varlist); varlist = varlist→link ;
if (varlist 6= type) wput (’,’);
else break;

}
t = type→link ;
DBG(dbgcweb , "Finishing parameter list in line %d\n", t→line no);
break;

}

Inside the procedure body, one thing that needs special attention are variables
passed by reference. The parser changes the use of a reference variable to a CREFID

token, and when I find one now, I dereference it.
〈 convert t from WEB to cweb 88 〉 +≡ (200)

case CREFID: wputs ("(*"), t = wid (t),wput (’)’); break;

In a procedure, the parser changes TEX’s return macro to a CPROCRETURN

token and now I expand the macro to a goto end if the label end still exists
because it was not in a tail position. Otherwise I generate a C return statement.
〈 convert t from WEB to cweb 88 〉 +≡ (201)

case CPROCRETURN:
if (t→sym ptr→goto count > 0) wprint ("goto end");
else wprint ("return");
t = t→next ; break;

6.20 Procedure calls
The most complex part of a procedure call is the argument list. If a procedure has
no parameters, there is no argument list in Pascal but there is an empty argument
list in C. Further, the use of reference parameters complicates the processing. I
need to add a “&” in front of a variable that is passed by reference in C. To
accomplish this, the parser constructs for every procedure a param mask and stores
it in the value field of the procedure identifier’s entry in the symbol table. A value
of 1 means “empty parameter list”; all the other bits correspond from left to right
to up to 31 parameters; a bit is set if the corresponding parameter is a reference
parameter. The parser uses these definitions:

6.20 Procedure calls 81

〈 external declarations 4 〉 +≡ (202)

extern unsigned int param mask , param bit ;
#define SIGN_BIT (∼(((unsigned int) ∼0) � 1))
#define START_PARAM (param mask = 0, param bit = SIGN_BIT)
#define NEXT_PARAM

(param bit = param bit � 1, CHECK(param bit 6= 0, "Too many parameters"))
#define REF_PARAM (param mask = param mask | param bit)

〈 global variables 12 〉 +≡ (203)

unsigned int param mask , param bit ;

When a procedure identifier is used in a procedure call, the parser changes the
token’s tag to PCALLID. This triggers the execution of the following code. It prints
the procedure name after checking for a possible change of the name caused by
the elimination of the string pool, and adds "()" for parameterless procedures.
In TEX the procedure identifier can be a macro, so the procedure identifier is not
necessarily preceding the argument list. Hence I have to process the procedure
identifier and the argument list separately.
〈 convert t from WEB to cweb 88 〉 +≡ (204)

case PCALLID: DBG(dbgcweb , "Converting call to %s in line %d\n",
SYM(t)→name , t→line no);

pstring2n (t, t→up); wid (t);
if (SYM(t)→value ≡ 1) wputs ("()");
t = t→next ; break;

At a possibly different place in the WEB file, I will encounter the POPEN token
that starts the argument list. It is linked to the corresponding PCLOSE token, and
the parser takes care of setting its up pointer to the corresponding PCALLID token
if there are reference parameters in the argument list.
〈 convert t from WEB to cweb 88 〉 +≡ (205)

case POPEN: wput (’(’);
if (t→up ≡ NULL ∨ SYM(t→up)→value ≡ 0) t = t→next ;
else { int param mask = SYM(t→up)→value ;

token ∗close = t→link ;
t = t→next ;
if (param mask < 0) wput (’&’);
param mask = param mask � 1;
while (t 6= close) {

if (t→tag ≡ PCOMMA) { wputs (", "); t = t→next ;
if (param mask < 0) wput (’&’);
param mask = param mask � 1;

}
else if (t→tag ≡ POPEN) t = wprint to(t, t→link); /∗ skip nested calls ∗/
else t = wtoken (t);

}
} break;

82 6.21 Writing the cweb

6.21 Functions

Functions are slightly more complicated than procedures because they feature a
return type and a return value. Let’s start with the function header. To find the
return type, the parser links the end of the parameter list to the colon and the
colon to the end of the return type.
〈 convert t from WEB to cweb 88 〉 +≡ (206)

case PFUNCTION:
DBG(dbgcweb , "Converting function heading in line %d\n", t→line no);
if (SYM(t) ≡ NULL ∨ SYM(t)→is extern ≡ 0) wprint ("static");
〈print the function heading 207 〉
break;

〈print the function heading 207 〉 ≡ (207)

{ token ∗param = t→link ;
token ∗type ;
if (param→tag ≡ POPEN) type = param→link→link ;
else type = param ;
wprint to(type , type→link); wprint to(t→next , t→link);
if (param→tag 6= POPEN) wputs ("(void)");
else wprint to(param , param→link→next);
t = type→link ;

} Used in 206 and 230.

Functions in Pascal return values by assigning them to the function identifier
somewhere within the body of the function. In contrast, C uses a return statement,
which also terminates the execution of the function immediately. The return
statement is equivalent to the Pascal assignment only if the assignment is in a tail
position of the function. While parsing, I build a parse tree of the function body.
This tree is then searched for assignments to the function identifier in tail positions
and these assignments can be converted to return statements.

I start with a function that determines whether a part of the parse tree is a
“tail”, that is, it leads directly to the function return.
〈 functions 14 〉 +≡ (208)

static bool wtail (token ∗t)
{ CHECK(t 6= NULL, "Unexpected NULL token while searching f\

or tail statements");
switch (t→tag) {
case PSEMICOLON: case PELSE: case CCASE:

return wtail (t→next) ∧ wtail (t→previous);
case PCOLON: return wtail (t→next);
case PRETURN: case CIGNORE: case CEMPTY: return true ;
case PASSIGN: case PCALLID: case PFUNCID: case CRETURN: case

CPROCRETURN: case PWHILE: case PREPEAT: case PFOR: case
PEXIT: case PGOTO: return false ;

case PBEGIN: case PIF: case PCASE: return wtail (t→previous);

6.21 Functions 83

default:
ERROR("Unexpected tag %s while searching for tail statements",

TAG(t));
}

}

The function wreturn accomplishes the main task. It is called by the parser,
when it has completed the parsing of the function body with parameter t pointing
to the parse tree of the entire body. The parameter tail , which tells us if the parse
tree t is in a tail position, is then set to true. The link parameter, pointing to a
possible PRETURN token, is NULL.

〈 external declarations 4 〉 +≡ (209)

extern void wreturn (token ∗t, int tail , token ∗link);

The function wreturn calls itself recursively to find and convert all instances
where a C return statement is appropriate. If I convert the TEX macro “return”
to a C return statement, I decrement its goto count . If at the end it is zero, I can
omit the label end marking the end of the function body.

〈 functions 14 〉 +≡ (210)

void wreturn (token ∗t, int tail , token ∗link)
{ CHECK(t 6= NULL,
"Unexpected NULL token while searching for return statements");
switch (t→tag) {
case PSEMICOLON:

if (t→next→tag ≡ PRETURN) wreturn (t→previous , true , t→next);
else { wreturn (t→next , tail , link);

if (wtail (t→next)) wreturn (t→previous , tail , link);
else wreturn (t→previous , false , NULL);

}
return;

case PCOLON: wreturn (t→next , tail , link); return;
case PASSIGN: case PCALLID: case PRETURN: case PEXIT: case PGOTO:

case CIGNORE: case CEMPTY: return;
case PWHILE: case PREPEAT: case PFOR: wreturn (t→previous , false , NULL);

return;
case PELSE: case CCASE: wreturn (t→next , tail , link);

wreturn (t→previous , tail , link); return;
case PCASE: case PIF: case PBEGIN: wreturn (t→previous , tail , link);

return;
case PFUNCID:

if (tail) { DBG(dbgreturn ,
"Converting assignment to function in line %d\n",
t→line no); t→tag = CRETURN; IGN(t→next);

if (link 6= NULL) { link→sym ptr→goto count −−;
t→sym ptr = link→sym ptr ; IGN(link), IGN(link→next);

84 6.21 Writing the cweb

DBG(dbgreturn , "Eliminating label %s (%d) in line %d\n",
link→sym ptr→name , link→sym ptr→goto count , t→line no);

}
}
return;

case CRETURN: /∗ this happened when the return; is inside a macro ∗/
if (t→sym ptr 6= NULL) { t→sym ptr→goto count −−;
DBG(dbgreturn , "Eliminating label %s (%d) in line %d\n",

t→sym ptr→name , t→sym ptr→goto count , t→line no);
}
return;

default:
ERROR("Unexpected tag %s in line %d"" while searching fo\

r return statements", TAG(t), t→line no);
}

}

The CRETURN tokens created by wreturn are finally translated into a C return
statement.
〈 convert t from WEB to cweb 88 〉 +≡ (211)

case CRETURN:
DBG(dbgcweb , "Converted function return %s in line %d\n",

SYM(t)→name , t→line no); wprint ("return"); t = t→next ; break;

After these transformations, there are only two functions left: x over n in line
2273 and xn over d in line 2306. These need a special local variable matching
the function name in the assignment and a trailing return statement. I have two
global variables to hold the symbol numbers of the two function names.
〈 global variables 12 〉 +≡ (212)

static int x over n no , xn over d no ;

〈 initialize token list 23 〉 +≡ (213)

x over n no = sym no("x_over_n"); xn over d no = sym no("xn_over_d");

The parser calls wlocal value to check for these two function names and change
the initial PBEGIN to an PFBEGIN and the trailing PEND to PFEND, setting the
sym no of these tokens to the symbol number of the function name.
〈 external declarations 4 〉 +≡ (214)

extern int wlocal value (token ∗t, token ∗begin , token ∗end);

〈 functions 14 〉 +≡ (215)

int wlocal value (token ∗t, token ∗begin , token ∗end)
{ int f no = t→sym no ;

if (f no 6= x over n no ∧ f no 6= xn over d no) return 0;
DBG(dbgcweb , "Discovered function %s; in line %d\n",

SYM(t)→name , t→line no);

6.22 The main program 85

CHGTAG(begin , PFBEGIN); begin→sym no = f no ;
CHGTAG(end , PFEND); end→sym no = f no ;
return 1;

}

Now I can generate the definition of a local variable with the same name as the
function (shadowing the function name) at the beginning and a matching return
statement at the end.
〈 convert t from WEB to cweb 88 〉 +≡ (216)

case PFBEGIN: DBG(dbgcweb , "Adding scaled %s; in line %d\n",
SYM(t)→name , t→line no); wprint ("scaled"); t = wid (t); wputs (";\n");

break;
case PFEND: DBG(dbgcweb , "Adding return %s; in line %d\n", SYM(t)→name ,

t→line no); wprint ("return"); t = wid (t); wputs (";}"); break;

6.22 The main program

While parsing the Pascal program, I change the PBEGIN token starting the main
program to a CMAIN token. Now I replace it by the heading of the main program.
Similarly I deal with the PEND ending the main program.
〈 convert t from WEB to cweb 88 〉 +≡ (217)

case CMAIN: if (SYM_PTR("main")→is extern) SYM_PTR("main")→type = t;
else wprint ("static");
wprint ("int main(void) {"); t = t→next ; break;

case CMAINEND: wprint ("return 0; }"); t = t→next ; break;

87

7 Running web2w

7.1 The command line

The usage function explains command line parameters and options.

〈 functions 14 〉 +≡ (218)

void usage (void)
{ fprintf (stderr , "Usage: web2w [parameters] filename.web\n"
"Parameters:\n"
"\t -p \t generate a Pascal output file\n"
"\t -o file \t specify an output file name\n"
"\t -l \t redirect stderr to a log file\n"
"\t -y \t generate a trace while parsing Pascal\n"
"\t -u \t generate macro names using upper case letters\n"
"\t -h \t generate a header file section\n"
"\t -e file \t file with extern identifiers\n"
〈 show debugging options 235 〉
); exit (1);

}

Processing the command line looks for options and then sets the basename for
input and output files.

〈 global variables 12 〉 +≡ (219)

#define MAX_NAME 256
static char basename [MAX_NAME];

〈process the command line 220 〉 ≡ (220)

{ int mk logfile = 0, mk pascal = 0, baselength = 0;
char ∗w file name = NULL;

ww flex debug = 0; pp debug = 0;
if (argc < 2) usage ();
argv ++; /∗ skip the program name ∗/
while (∗argv 6= NULL) {

if ((∗argv)[0] ≡ ’-’) { char option = (∗argv)[1];

88 7.1 Running web2w

switch (option) {
default: usage ();
case ’p’: mk pascal = 1; break;
case ’o’: argv ++;

if (∗argv ≡ NULL ∨ ∗argv [0] ≡ ’-’) usage ();
w file name = ∗argv ; break;

case ’l’: mk logfile = 1; break;
case ’y’: pp debug = 1; break;
case ’u’: uppercase = 1; break;
case ’h’: header section = 1; break;
case ’e’: argv ++;

if (∗argv ≡ NULL ∨ ∗argv [0] ≡ ’-’) usage ();
exports name = ∗argv ; break;

case ’d’:
argv ++;
if (∗argv ≡ NULL ∨ ∗argv [0] ≡ ’-’) usage ();
debugflags = strtol (∗argv , NULL, 16);
if (debugflags & dbgflex) ww flex debug = 1;
if (debugflags & dbgbison) pp debug = 1;
break;

}
}
else { strncpy (basename , ∗argv , MAX_NAME − 1);

baselength = strlen (basename);
if (baselength > 4 ∧ strncmp(basename + baselength − 4, ".web", 4) ≡ 0)

baselength = baselength − 4;
basename [baselength] = 0;
if (∗(argv + 1) 6= NULL) usage ();

}
argv ++;

}
〈 open the files 225 〉

} Used in 2.

The -u option causes web2w to convert all macro names to upper case letters.
〈 global variables 12 〉 +≡ (221)

int uppercase = 0;

〈 convert macro names name to upper case if requested 222 〉 ≡ (222)

if (uppercase) { char ∗s = SYM(t)→name ;
while (∗s 6= 0) {

if (’a’ ≤ ∗s ∧ ∗s ≤ ’z’) ∗s = ∗s− ’a’ + ’A’;
s++;

}
} Used in 144.

7.3 Generating a header file 89

7.2 Opening files
After the command line has been processed, four file streams need to be opened:
win , the input file; w, the output file; logfile , if a log file is asked for; and pp out ,
if the output of the Pascal code is requested. For technical reasons, the scanner
generated by flex needs an output file ww out . The log file is opened first because
this is the place where error messages should go while the other files are opened.
〈 global variables 12 〉 +≡ (223)

static FILE ∗w = NULL;
static FILE ∗pp out = NULL;
FILE ∗logfile = NULL;
static char ∗exports name = NULL;

〈 external declarations 4 〉 +≡ (224)

extern FILE ∗logfile ;

〈 open the files 225 〉 ≡ (225)

if (mk logfile) { strcat (basename , ".log");
logfile = freopen (basename , "w", stderr);
if (logfile ≡ NULL) {

fprintf (stderr , "Unable to open logfile %s", basename);
logfile = stderr ;

}
ww out = logfile ; basename [baselength] = 0;

}
else { logfile = stderr ; ww out = stderr ;
}
strcat (basename , ".web"); ww in = fopen (basename , "r");
if (ww in ≡ NULL) ERROR("Unable to open input file %s", basename);
basename [baselength] = 0;
if (w file name ≡ NULL) { strcat (basename , ".w"); w file name = basename ;
}
w = fopen (w file name , "w");
if (w ≡ NULL) ERROR("Unable to open output file %s",w file name);
basename [baselength] = 0;
if (mk pascal) { strcat (basename , ".pas"); pp out = fopen (basename , "w");

if (pp out ≡ NULL) ERROR("Unable to open pp_out file %s", basename);
basename [baselength] = 0;

} Used in 220.

7.3 Generating a header file
The -h option causes web2w to generate a final section that produces a header
file. The header file contains all macros defined in the WEB file and all the extern
procedures, functions, and global variables.
〈 global variables 12 〉 +≡ (226)

int header section = 0;

90 7.3 Running web2w

〈 generate a header section if requested 227 〉 ≡ (227)

if (header section) { wputs ("\n@ Generating the header file.\n");
wputs ("@("); wputs (basename); wputs (".h@>=\n"
"@h\n"
"enum {@+@<Constants in the outer block@>@+};\n"
"@<Types in the outer block@>@;\n");
〈 generate extern declarations 230 〉

} Used in 114.

The -e option can be used to specify a file with a list of identifiers that should
be exported. It is followed by the name of a text file that contains one identifier
per line. If a global variable, function, or procedure identifier matches one of these
lines, it is marked as extern and a definition is included in the header file. All
other global identifiers are defined as static.

When we read the text file, we ignore ’\r’, but otherwise only alphanumeric
characters, underscores, and newlines are allowed. The is extern field in the symbol
table is used to link extern symbols into a list.
〈 global variables 12 〉 +≡ (228)

int extern symbols = −1;

〈finalize token list 70 〉 +≡ (229)

if (exports name 6= NULL) { int c, n = 0;
char s[MAX_NAME];
int k; /∗ index into s ∗/
FILE ∗e = fopen (exports name , "r");
if (e ≡ NULL)
ERROR("Unable to open extern name file %s", exports name);

SYM_PTR("main")→is extern = 0; c = getc(e);
while (c 6= EOF) { n++; k = 0;

while (c 6= EOF) {
if (c ≡ ’\n’) { c = getc(e); break; }
else if (c ≡ ’\r’) c = getc(e);
else if (¬isalnum (c) ∧ c 6= ’_’)
ERROR("Unexpected character %c(%x) in %s, line %d\n",

c, c, exports name , n);
else { s[k++] = c;

if (k ≥ MAX_NAME)
ERROR("extern name too long in %s, line %d\n",

exports name , n);
c = getc(e);

}
}
if (k > 0) { int i;

s[k] = 0; i = sym no(s); symbol table [i]→is extern = extern symbols ;
extern symbols = i;
DBG(dbgid , "Extern symbol %s\n", symbol table [i]→name);

7.3 Generating a header file 91

}
}
fclose (e);

}

Next we generate the extern declarations. The parser has set the type field of
an extern symbol to point to the PPROCEDURE token of the procedure’s definition,
and the sym no of the PPROCEDURE token to the symbol number of the procedure’s
name. The former is used now to generate the declaration, the latter is used above
to decide whether to add the static keyword. The same linkage is also done for
PFUNCTION tokens. Simpler is the linkage for global variables, where the PID

or PDEFVARID is linked to itself. However the generation of extern definitions for
variables is more complex due to type conversions and the special handling of Pascal

arrays. For arrays, only a constant pointer is exported, pointing to the actual or
virtual element with index zero.
〈 generate extern declarations 230 〉 ≡ (230)

while (extern symbols > 0) { symbol ∗x = symbol table [extern symbols];
token ∗t = x→type ;
if (t ≡ NULL) ERROR("Symbol %s in file %s was never defined",

x→name , exports name);
else { wprint ("extern");

if (t→tag ≡ CMAIN) wprint ("int main(void)");
if (t→tag ≡ PPROCEDURE) 〈print the procedure heading 198 〉
else if (t→tag ≡ PFUNCTION) 〈print the function heading 207 〉
else if (t→tag ≡ PDEFVARID ∨ t→tag ≡ PID) { varlist = t;

token ∗array type = NULL;
〈determine the type and storage class 168 〉
if (¬is extern)
ERROR("Static variables become non static in line %d\n",

t→line no);
if (t→next→tag ≡ PARRAY) array type = t→next ;
else if (t→next→tag ≡ PPACKED ∧ t→next→next→tag ≡ PARRAY)

array type = t→next→next ;
if (array type 6= NULL) {

token ∗element type = array type→link→link→link→link ;
wprint to(element type , element type→link);
if (x→is zero based) { wprint (x→name); wputs ("[]"); }
else { wputs (" *const "); wprint (x→name); }

}
else { 〈print the variable’s type 169 〉 wprint (x→name); }

}
wputs (";\n");

}
extern symbols = x→is extern ;

} Used in 227.

92 7.4 Running web2w

As an example, suppose you want to use just a few of TEX’s functions in one
of your projects, and for the sake of simplicity, assume that you just need the
simple x over n function. Then you could create a file, let’s call it myexterns.txt
containing only a single line with the name of the function you need: x_over_n.
Now you run “web2w -h -e myexterns.txt tex.web” to get tex.w and patch it
with ctex.patch to get ctex.w (see also section 10.4). When you now run ctangle
on ctex.w you will get ctex.c as usual, and in addition, you get a header file tex.h
that contains TEX’s macros, constants, types and at the bottom a single function
declaration: “extern scaled x_over_n(scaled x,int n);”. In the ctex.c file,
all global variables and functions, even the main function, are declared static—
except of course the function x over n . When you compile ctex.c, ask your
compiler to optimize your code, for example by adding the option -O3, and it
will remove all the static functions and variables that are defined but never used.
In our example, the compiler will produce an object file containing in the text
segment just the function x over n (88 byte) and in the bss section two global
variables bool arith error and scaled rem (5 byte). The two variables are in the
object file because they are referenced by x over n but they are not visible. To
make them visible, simply add them to your myexterns.txt file.

7.4 Error handling and debugging
There is no good program without good error handling. To print messages or
indicate errors, I define the following macros:
〈 external declarations 4 〉 +≡ (231)

#include <stdlib.h>
#include <stdio.h>
#define MESSAGE(. . .) (fprintf (logfile , __VA_ARGS__),fflush (logfile))
#define ERROR(. . .) (fprintf (logfile , "ERROR: "), MESSAGE(__VA_ARGS__),

fprintf (logfile , "\n"), exit (1))
#define CHECK(condition , . . .) (¬(condition) ? ERROR(__VA_ARGS__) : 0)

To display the content of a token, I can use THE_TOKEN.
〈 external declarations 4 〉 +≡ (232)

#define THE_TOKEN (t) "%d\t%d: %s\t[%s]\n", t→line no , t→sequence no ,
token2string (t), tagname (t→tag)

The amount of debugging depends on the debugging flags.
〈 global variables 12 〉 +≡ (233)

debugmodedebugflags = dbgnone ;

The different debug values are taken from an enumeration type.
〈 external declarations 4 〉 +≡ (234)

typedef enum {
dbgnone = #0, dbgbasic = #1, dbgflex = #2, dbglink = #4, dbgtoken = #8,

dbgid = #10, dbgpascal = #20, dbgexpand = #40, dbgbison = #80,
dbgparse = #100, dbgcweb = #200, dbgjoin = #400, dbgstring = #800,
dbgstmt = #1000, dbgslash = #2000, dbgmacro = #4000,

7.4 Error handling and debugging 93

dbgarray = #8000, dbgreturn = #10000, dbgsemicolon = #20000,
dbgbreak = #40000, dbgtypes = #80000

} debugmode;
extern debugmode debugflags ;
extern int ww flex debug ;

Here is an explanation of these flags as shown in the help text.
〈 show debugging options 235 〉 ≡ (235)

"\t -d XX\t hexadecimal debug value. OR together these values:\n"
"\t \t \t XX=1 basic debugging\n"
"\t \t \t XX=2 flex debugging\n"
"\t \t \t XX=4 link debugging\n"
"\t \t \t XX=8 token debugging\n"
"\t \t \t XX=10 identifier debugging\n"
"\t \t \t XX=20 Pascal tokens debugging\n"
"\t \t \t XX=40 expansion debugging\n"
"\t \t \t XX=80 bison debugging\n"
"\t \t \t XX=100 Pascal parser debugging\n"
"\t \t \t XX=200 cweb debugging\n"
"\t \t \t XX=400 join debugging\n"
"\t \t \t XX=800 string pool debugging\n"
"\t \t \t XX=1000 Pascal statement debugging\n"
"\t \t \t XX=2000 real division debugging\n"
"\t \t \t XX=4000 macro debugging\n"
"\t \t \t XX=8000 array debugging\n"
"\t \t \t XX=10000 return debugging\n"
"\t \t \t XX=20000 semicolon debugging\n"
"\t \t \t XX=40000 break debugging\n"
"\t \t \t XX=80000 type debugging\n" Used in 218.

The following macros are used to produce debug output.
〈 external declarations 4 〉 +≡ (236)

#define DBG(flags , . . .)
{ if (debugflags & flags) MESSAGE(__VA_ARGS__); }

#define DBGTOKS (flags , from , to)
{

if (debugflags & flags) { token ∗t = from ;
MESSAGE("<<");
while (t 6= to) { MESSAGE("%s ", token2string (t)); t = t→next ; }
MESSAGE(">>\n");

}
}

#define TAG (t) (t ? tagname (t→tag) : "NULL")
#define DBGTREE (flags , t) DBG (flags , "%s -> %s | %s | %ld\n", TAG(t),

TAG(t→previous), TAG(t→next), t→value)

95

8 The scanner
%{

#include "web2w.h"

#include "pascal.tab.h"

static int pre_ctl_mode=0;

%}

%option prefix="ww_"

%option noyywrap yylineno nounput noinput batch

%option debug

%x PASCAL MIDDLE DEFINITION FORMAT NAME CONTROL

ID [a-zA-Z_][a-zA-Z0-9_]*

SP [[:blank:]]*

STARSECTION @*{SP}(\\\[[0-9a-z]+\])?

SPACESECTION @[[:space:]]{SP}

REAL [0-9]+(\.[0-9]+(E[+-]?[0-9]+)?|E[+-]?[0-9]+)

DDD {SP}\.\.\.{SP}

%%

/* WEB codes, see WEB User Manual page 7 ff*/

<INITIAL>{

{SPACESECTION} EOS;TOK("@ ",ATSPACE);BOS;

{STARSECTION} EOS;TOK("@*",ATSTAR); BOS;

@[dD] EOS;TOK("@d ",ATD);SEQ;BEGIN(DEFINITION);

@[fF] EOS;TOK("@f ",ATF);SEQ;BEGIN(FORMAT);

@[pP] EOS;TOK("@p ",ATP);PROGRAM;PUSH;SEQ;BEGIN(PASCAL);

@\<{SP} EOS;TOK("@<",ATLESS);PUSH;BOS;SEQ;BEGIN(NAME);

\{ ADD;PUSH_NULL;

\} POP_LEFT;

\| EOS;TOK("|",BAR);PUSH;BEGIN(PASCAL);

@’[0-7]+ EOS;TOK(COPY,OCTAL);BOS;

@\"[0-9a-fA-F]+ EOS;TOK(COPY,HEX);BOS;

@\^ ADD;CTL;

@\. ADD;CTL;

@\: ADD;CTL;

@! EOS;TOK("@!",ATEX); BOS;

@\? EOS;TOK("@?",ATQM); BOS;

96 8 The scanner

@@ EOS;TOK("@@",ATAT);BOS;

\n ADD;

\\\? add_string("\\@@"); /* |\?| is used in cwebmac.tex */

([^\\%@|{}.\n])* ADD; /* we do not analyze TEX parts any further */

\\[\\%@|{}] ADD;

\\ ADD;

\%.* ADD;

. ADD;

<<EOF>> EOS;TOK("",WEBEOF);return 0;

}

<CONTROL>{

@\> ADD; END_CTL;

\\AT! add_string("\\AT"); /* webmac uses \AT! */

_ add_string("_");

_ add_string("_"); /* etex uses ’_’ without ’\’ */

\n ERROR("Unexpected \\n in control text");

@ ERROR("Unexpected @ in control text");

. ADD;

}

<MIDDLE>{

{SPACESECTION} TOK("@ ",ATSPACE);POP;BOS;SEQ;BEGIN(TEX);

{STARSECTION} TOK("@*",ATSTAR); POP;BOS;SEQ;BEGIN(TEX);

@[dD] TOK("@d ",ATD);POP;SEQ;BEGIN(DEFINITION);

@[fF] TOK("@f ",ATF);POP;SEQ;BEGIN(FORMAT);

@[pP] TOK("@p ",ATP);POP;PROGRAM;PUSH;SEQ;BEGIN(PASCAL);

@\<{SP} TOK("@<",ATLESS);POP;PUSH;BOS;SEQ;BEGIN(NAME);

\{ TOK(" {",MLEFT);PUSH;BEGIN(TEX);BOS;

}

<DEFINITION>{

{ID} SYMBOL;

\(#\) TOK("(#)",PARAM);

= TOK("=",EQEQ);PUSH;DEF_MACRO(NMACRO);BEGIN(MIDDLE);

== TOK("==",EQEQ);PUSH;DEF_MACRO(OMACRO);BEGIN(MIDDLE);

[[:space:]] ;

}

<FORMAT>{

begin TOK("if",PIF);

end TOK("if",PIF);

{ID} SYMBOL;

== TOK("==",EQEQ);PUSH;

\{ TOK(" {",MLEFT);PUSH;BEGIN(TEX);BOS;

\n TOK("\n",NL);BEGIN(MIDDLE);

[[:space:]] ;

8 The scanner 97

}

<NAME>{

{SP}@\> EOS;AT_GREATER;BEGIN(PASCAL);

{DDD}@\> EOS;TOK("...",ELIPSIS);AT_GREATER;BEGIN(PASCAL);

{SP}@\>{SP}= EOS;AT_GREATER_EQ;BEGIN(PASCAL);

{DDD}@\>{SP}= EOS;TOK("...",ELIPSIS);AT_GREATER_EQ;BEGIN(PASCAL);

[[:space:]]+ add_string(" ");

. ADD;

}

<PASCAL>{

{SPACESECTION} TOK("@ ",ATSPACE);POP;BOS;SEQ;BEGIN(TEX);

{STARSECTION} TOK("@*",ATSTAR);POP;BOS;SEQ;BEGIN(TEX);

@\<{SP} TOK("@<",ATLESS);PUSH;BOS;BEGIN(NAME);

\{ TOK(" {",PLEFT);PUSH;BEGIN(TEX);BOS;

}

<MIDDLE,PASCAL>{

<<EOF>> TOK("",WEBEOF);POP;return 0;

@’[0-7]+ TOK(COPY,OCTAL);

@\"[0-9a-fA-F]+ TOK(COPY,HEX);

@! TOK("@!",ATEX);

@\? TOK("@?",ATQM);

\| TOK("|",BAR);POP;BEGIN(TEX);BOS;

@t BOS; ADD; CTL;

@= BOS; ADD; CTL;

\} ERROR("Unexpected }");

\(TOK("(",POPEN);PUSH;

\) TOK(")",PCLOSE);POP;

TOK("#",HASH);/* used in macros */

\n TOK("\n",NL); /* non Pascal tokens */

@\^ BOS; ADD; CTL;

@\. BOS; ADD; CTL;

@\: BOS; ADD; CTL;

@\$ TOK("@$",ATDOLLAR);

@\{ TOK("@{",ATLEFT);

@\} TOK("@}",ATRIGHT);

@\{[^\n]*@\} TOK(COPY,METACOMMENT);

@\& TOK("@&",ATAND);

@\\ TOK("@\\",ATBACKSLASH);

@, TOK("@,",ATCOMMA);

@\/ TOK("@/",ATSLASH);

@\| TOK("@|",ATBAR);

@\# TOK("@#",ATHASH);

@\+ TOK("@+",ATPLUS);

98 8 The scanner

@\; TOK("@;",ATSEMICOLON);

= TOK("=",PEQ); /* Pascal tokens */

\+ TOK("+",PPLUS);

\- TOK("-",PMINUS);

* TOK("*",PSTAR);

\/ TOK("/",PSLASH);

\<\> TOK(" <> ",PNOTEQ);

\< TOK(" < ",PLESS);

\> TOK(" > ",PGREATER);

\<= TOK(" <= ",PLESSEQ);

\>= TOK(" >= ",PGREATEREQ);

\[TOK("[",PSQOPEN);

\] TOK("]",PSQCLOSE);

:= TOK(":=",PASSIGN);

\. TOK(".",PDOT);

\.\. TOK("..",PDOTDOT);

, TOK(",",PCOMMA);

; TOK(";",PSEMICOLON);

: TOK(": ",PCOLON);

\^ TOK("^",PUP);

t@&y@&p@&e TOK("type",PTYPE); /* see line 676 of tex.web */

"mod" TOK("mod",PMOD); /* pascal keywords */

"div" TOK("div",PDIV);

"nil" TOK("nil",PNIL);

"in" TOK("in",PIN);

"or" TOK("or",POR);

"and" TOK("and",PAND);

"not" TOK("not",PNOT);

"if" TOK("if",PIF);

"then" TOK("then",PTHEN);

"else" TOK("else",PELSE);

"case" TOK("case",PCASE);

"of" TOK("of",POF);

"others" TOK("others",POTHERS);

"forward" TOK("forward",PFORWARD);

"repeat" TOK("repeat",PREPEAT);

"until" TOK("until",PUNTIL);

"while" TOK("while",PWHILE);

"do" TOK("do",PDO);

"for" TOK("for",PFOR);

"to" TOK("to",PTO);

"downto" TOK("downto",PDOWNTO);

"begin" TOK("begin",PBEGIN);

"end" TOK("end",PEND);

"with" TOK("with",PWITH);

8 The scanner 99

"goto" TOK("goto",PGOTO);

"const" TOK("const",PCONST);

"var" TOK("var",PVAR);

"array" TOK("array",PARRAY);

"record" TOK("record",PRECORD);

"set" TOK("set",PSET);

"file" TOK("file",PFILE);

"function" TOK("function",PFUNCTION);

"procedure" TOK("procedure",PPROCEDURE);

"label" TOK("label",PLABEL);

"packed" TOK("packed",PPACKED);

"program" TOK("program",PPROGRAM);

"char" TOK("char",PTYPECHAR);

"integer" TOK("integer",PTYPEINT);

"real" TOK("real",PTYPEREAL);

"boolean" TOK("boolean",PTYPEBOOL);

"endcases" TOK("endcases",PEND);

"othercases" TOK("othercases",POTHERS);

"mtype" TOK("type",PTYPE);

"final_end" TOK("final_end",PEXIT);

"return" TOK_RETURN;

"debug" TOK("debug",WDEBUG);

"gubed" TOK("debug",WGUBED);

"stat" TOK("stat",WSTAT);

"tats" TOK("tats",WTATS);

"init" TOK("init",WINIT);

"tini" TOK("tini",WTINI);

{ID} SYMBOL; SYM(last_token)->scan_count++;

\"([^"\n]|\"\")\" TOK(COPY,CHAR); /* single character string */

\"([^"\n]|\"\")*\" TOK(COPY,STRING); /* multiple character string */

\’([^’\n]|\’\’|@@)\’ TOK(COPY,PCHAR);

\’([^’\n]|\’\’)*\’ TOK(COPY,PSTRING);

[0-9]+ TOK(COPY,PINTEGER);

{REAL} TOK(COPY,PREAL);

^[[:blank:]]+ TOK(COPY,INDENT);

[[:blank:]] ; /* in Pascal mode we ignore spaces */

}

/* anything that gets to this line

is an illegal character */

<*>. { ERROR("Illegal %c (0x%02x) in line %d mode %d",

yytext[0],yytext[0],yylineno, YY_START);}

%%

101

9 The parser
The following code is contained in the file pascal.y. It represents a modified
grammar for the Pascal language. Here and throughout of this document, terminal
symbols, or tokens, are shown using a small caps font; nonterminal symbols use a
slanted font.

%{

#include <stdio.h>

#include "web2w.h"

static int function=0;

%}

%code requires {

#define PP_STYPE token *

#define YYSTYPE PP_STYPE

extern int pp_parse(void);

extern int pp_debug;

}

%token-table

%defines

%error_verbose

%debug

%name-prefix "pp_"

%expect 1

%token PEOF 0 "end of file"

%token WEBEOF "end of web"

%token HEAD

%token BAR

%token PLEFT

%token MLEFT

%token RIGHT

%token OPEN

%token CLOSE

%token TEXT

%token NL

%token HASH

102 9 The parser

%token NMACRO

%token OMACRO

%token PMACRO

%token PARAM

%token EQ

%token EQEQ

%token ATSTAR

%token ATSPACE

%token ATD

%token ATF

%token ATLESS

%token ATGREATER

%token ELIPSIS

%token ATP

%token OCTAL

%token HEX

%token ATAT

%token ATDOLLAR

%token ATLEFT

%token ATRIGHT

%token ATCTL

%token ATAND

%token ATBACKSLASH

%token ATEX

%token ATQM

%token ATCOMMA

%token ATSLASH

%token ATBAR

%token ATHASH

%token ATPLUS

%token ATSEMICOLON

%token STRING

%token CHAR

%token INDENT

%token METACOMMENT

%token CSEMICOLON

%token ID

%token WDEBUG

%token WSTAT

%token WINIT

%token WTINI

%token WTATS

%token WGUBED

%token PRETURN "return"

9 The parser 103

%token FIRST_PASCAL_TOKEN

%token PPLUS "+"

%token PMINUS "-"

%token PSTAR "*"

%token PSLASH "/"

%token PEQ "="

%token PNOTEQ "<>"

%token PLESS "<"

%token PGREATER ">"

%token PLESSEQ "<="

%token PGREATEREQ ">="

%token POPEN "("

%token PCLOSE ")"

%token PSQOPEN "["

%token PSQCLOSE "]"

%token PASSIGN ":="

%token PDOT "."

%token PCOMMA ","

%token PSEMICOLON ";"

%token PMOD "mod"

%token PDIV "div"

%token PNIL "nil"

%token POR "or"

%token PAND "and"

%token PNOT "not"

%token PIF "if"

%token PTHEN "then"

%token PELSE "else"

%token PREPEAT "repeat"

%token PUNTIL "until"

%token PWHILE "while"

%token PDO "do"

%token PFOR "for"

%token PTO "to"

%token PDOWNTO "downto"

%token PBEGIN "begin"

%token PEND "end"

%token PGOTO "goto"

%token PINTEGER "0-9"

%token PREAL "real"

%token POTHERS "others"

%token PSTRING "’...’"

%token PCHAR "’.’"

%token PTYPECHAR "char type"

%token PTYPEBOOL "bool type"

104 9 The parser

%token PTYPEINT "integer type"

%token PTYPEREAL "real type"

%token PTYPEINDEX "index type"

%token PID "identifier"

%token PDEFVARID "variable definition"

%token PDEFPARAMID "parameter definition"

%token PDEFREFID "reference parameter definition"

%token PCONSTID "constant"

%token PDEFCONSTID "constant definition"

%token PDEFTYPEID "typename definition"

%token PDEFTYPESUBID "subrange typename definition"

%token PARRAYFILETYPEID "array of file type"

%token PARRAYFILEID "array of file name"

%token PFUNCID "functionname"

%token PDEFFUNCID "functionname definition"

%token PPROCID "procedurename"

%token PCALLID "call"

%token PRETURNID "return value"

%token PEXIT "final_end"

%token PFBEGIN "function begin"

%token PFEND "function end"

%token PDOTDOT ".."

%token PCOLON ":"

%token PUP "^"

%token PIN "in"

%token PCASE "case"

%token POF "of"

%token PWITH "with"

%token PCONST "const"

%token PVAR "var"

%token PTYPE "type"

%token PARRAY "array"

%token PRECORD "record"

%token PSET "set"

%token PFILE "file"

%token PFUNCTION "function"

%token PPROCEDURE "procedure"

%token PLABEL "label"

%token PPACKED "packed"

%token PPROGRAM "program"

%token PFORWARD "forward"

%token CIGNORE

%token CLABEL

%token CLABELN

9 The parser 105

%token CINTDEF

%token CSTRDEF

%token CMAIN

%token CMAINEND

%token CUNION

%token CTSUBRANGE

%token CINT

%token CREFID "reference variable"

%token CRETURN "C function return"

%token CPROCRETURN "C procedure return"

%token CCASE "C case"

%token CCOLON "C :"

%token CBREAK "break"

%token CEMPTY "empty statement"

%token CTLOCAL "local : id"

%token CTINT "int type"

%%

program : programheading globals
PBEGIN statements PEND PDOT

{ CHGTAG($3,CMAIN); CHGTAG($5,CMAINEND); IGN($6);

wsemicolon($4,$5);

}

;

programheading : PPROGRAM PID PSEMICOLON { LNK($1,$3); }

;

globals : labels constants types variables procedures
;

labels :

| PLABEL labellist PSEMICOLON { IGN($3); }

;

labellist : labeldecl
| labellist PCOMMA labeldecl { IGN($2); }

;

labeldecl : NMACRO { IGN($1); SYM($1)->scan_count--;}

| PINTEGER { IGN($1); }

| PEXIT { IGN($1); }

| labeldecl PPLUS PINTEGER { IGN($2); IGN($3); }

;

constants :

| PCONST constdefinitions
| PCONST constdefinitions conststringdefinition
;

106 9 The parser

constdefinitions : constdefinition
| constdefinitions constdefinition
;

constdefinition : PID PEQ PINTEGER PSEMICOLON { LNK($2,$4);

SETVAL($1,getval($3)); CHGID($1,PCONSTID);

CHGTAG($1,CINTDEF); CHGTAG($2,PASSIGN); CHGTAG($4,PCOMMA); }

;

conststringdefinition : PID PEQ PSTRING PSEMICOLON

{ seq($1,$4); LNK($1,$4);CHGID($1,PCONSTID);

CHGTAG($1,CSTRDEF);CHGTAG($2,PASSIGN); }

;

types :

| PTYPE typedefinitions { IGN($1); }

;

typedefinitions : typedefinition
| typedefinitions typedefinition
;

typedefinition : PID PEQ subrange PSEMICOLON

{ DBG(dbgparse,"New Subrange Type: %s\n",

SYM($1)->name);

LNK($1,$2); IGN($2);LNK($2,$4);

CHGTYPE($1,$3);

CHGTAG($1,PDEFTYPEID);

CHGTAG($2,CTSUBRANGE); UP($2,$3);

}

| PID PEQ type PSEMICOLON

{ DBG(dbgparse,"New Type: %s\n",

SYM($1)->name);

LNK($1,$2); IGN($2); LNK($2,$4);

CHGTYPE($1,$3); LNK($3,$4);

CHGTAG($1,PDEFTYPEID);

}

;

subrange : iconst PDOTDOT iconst
{ $$=join(PDOTDOT,$1,$3,$3->value-$1->value+1); }

;

iconst : signed_iconst { $$=$1; }

| iconst PPLUS simple_iconst
{ $$=join(PPLUS,$1,$3,$1->value+$3->value); }

| iconst PMINUS simple_iconst
{ $$=join(PMINUS,$1,$3,$1->value-$3->value); }

;

9 The parser 107

signed_iconst : simple_iconst { $$=$1; }

| PPLUS simple_iconst { $$=join(PPLUS,NULL,$2,$2->value); }

| PMINUS simple_iconst
{ $$=join(PMINUS,NULL,$2,-($2->value)); }

;

simple_iconst : PINTEGER { $$=join(PINTEGER,$1,NULL,getval($1)); }

| NMACRO { $$=join(NMACRO,$1,NULL,getval($1)); USE_NMACRO($1); }

| PCONSTID { $$=join(PCONSTID,$1,NULL,getval($1)); }

;

file_type : packed PFILE POF typename { $$=$2; }

| packed PFILE POF subrange { $$=$2; }

;

packed : PPACKED

|
;

builtin_type : PTYPEINT

| PTYPEREAL

| PTYPEBOOL

| PTYPECHAR

;

typename : builtin_type { $$=NULL; }

| PID { $$=NULL; }

;

record_type : packed PRECORD fields PEND { LNK($2,$4); LNK($3,$4);

if ($3) CHGTAG($4,PSEMICOLON); else IGN($4); $$=NULL; }

| packed PRECORD variant_part PEND

{ LNK($2,$4); LNK($3,$4); IGN($4); $$=NULL; }

| packed PRECORD fields PSEMICOLON variant_part PEND

{ LNK($2,$6); LNK($3,$4); LNK($5,$6); IGN($6); $$=NULL; }

;

fields : recordsection { $$=$1; }

| fields PSEMICOLON recordsection { LNK($1,$2); $$=$3; }

;

/* in a recordsection the first PID links to the PCOLON, the recordsection

points to the PCOLON */

recordsection : { $$=NULL; }

| recids PCOLON type { LNK($1,$2); IGN($2); $$=$2; }

| recids PCOLON subrange
{ LNK($1,$2); CHGTAG($2,CTSUBRANGE); UP($2,$3); $$=$2; }

;

108 9 The parser

/* recids point to the first PID which is changed to PDEFVARID */

recids : PID { $$=$1; CHGTAG($1,PDEFVARID); }

| recids PCOMMA PID { $$=$1; }

;

variant_part : PCASE PID POF variants { IGN($1);IGN($2);

CHGTAG($3,CUNION); $$=$3; }

;

variants : variant
| variants variant
;

variant : PINTEGER PCOLON POPEN recordsection PCLOSE PSEMICOLON

{ IGN($1); IGN($2); IGN($3);

LNK($4,$5);

IGN($5); }

| PINTEGER PCOLON POPEN recordsection PSEMICOLON

recordsection PCLOSE PSEMICOLON

{ IGN($1); IGN($2); CHGTAG($3,PRECORD);

LNK($3,$8); LNK($4,$5); LNK($6,$7); CHGTAG($7,PSEMICOLON); }

;

type : typename
| file_type
| record_type
;

9 The parser 109

array_type : packed PARRAY PSQOPEN iconst PDOTDOT iconst PSQCLOSE

POF type { LNK($2,$3);

UP($2,join(PDOTDOT,$4,$6,$6->value-$4->value+1));

LNK($3,$5); LNK($5,$7); LNK($7,$8);$$=$8; }

| packed PARRAY PSQOPEN iconst PDOTDOT iconst PSQCLOSE

POF subrange { LNK($2,$3);

UP($2,join(PDOTDOT,$4,$6,$6->value-$4->value+1));

LNK($3,$5); LNK($5,$7); LNK($7,$8);

CHGTAG($8,CTSUBRANGE); UP($8,$9);$$=$8; }

| packed PARRAY PSQOPEN PID PSQCLOSE POF type { LNK($2,$3);

UP($2,$4);LNK($3,$4); LNK($4,$5); LNK($5,$6);$$=$6; }

| packed PARRAY PSQOPEN PID PSQCLOSE POF subrange
{ LNK($2,$3); UP($2,$4); LNK($3,$4); LNK($4,$5);

LNK($5,$6); CHGTAG($6,CTSUBRANGE); UP($6,$7);$$=$6; }

| packed PARRAY PSQOPEN PTYPECHAR PSQCLOSE

POF type { LNK($2,$3); UP($2,join(PDOTDOT,

join(PTYPECHAR,$1,$1,0),join(PTYPECHAR,$1,$1,255),256));

$3->link=join(PTYPECHAR,$3,$5,256); $3->link->link=$5;

/* the PTYPECHAR comes from a macroexpansion, so we can not

link it directly */ LNK($5,$6); $$=$6; }

;

variables :

| PVAR vardeclarations { IGN($1); }

;

vardeclarations : vardeclaration
| vardeclarations vardeclaration
;

vardeclaration : varids PCOLON type PSEMICOLON { LNK($1,$2);

IGN($2); LNK($2,$4); }

| varids PCOLON array_type PSEMICOLON { LNK($1,$2);

IGN($2); LNK($3,$4); LNK($2,$4); }

| varids PCOLON subrange PSEMICOLON { LNK($1,$2);

CHGTAG($2,CTINT); UP($2,$3); LNK($2,$4); }

;

varids : entire_var { CHGTAG($1,PDEFVARID); $1->sym_ptr->is_global=1; $$=$1;}

| varids PCOMMA entire_var { LNK($1,$3);$3->sym_ptr->is_global=1; $$=$3; }

;

entire_var : PID { $$=$1; CHGTYPE($1,$1); }

| CREFID { $$=$1; CHGTAG($1,PID); CHGID($1,PID); CHGTYPE($1,$1); }

;

110 9 The parser

procedures :

| procedures procedure
| procedures function
;

locals : PVAR localvardeclarations { CHGTAG($1,PBEGIN); }

| PLABEL locallabellist PSEMICOLON localvariables
{ CHGTAG($1,PBEGIN); IGN($3); }

;

locallabellist : locallabeldecl
| locallabellist PCOMMA locallabeldecl { IGN($2); }

;

locallabeldecl : NMACRO { IGN($1); SYM($1)->scan_count--; localize($1); }

| PINTEGER { IGN($1); }

| labeldecl PPLUS PINTEGER { IGN($2); IGN($3); }

;

localvariables :

| PVAR localvardeclarations { IGN($1); }

;

localvardeclarations : localvardeclaration
| localvardeclarations localvardeclaration
;

localvardeclaration : localvarids PCOLON PID PSEMICOLON

{ LNK($1,$2); CHGTAG($2,CTLOCAL); LNK($2,$4); }

| localvarids PCOLON builtin_type PSEMICOLON

{ LNK($1,$2); IGN($2); LNK($2,$4); }

| localvarids PCOLON array_type PSEMICOLON

{ LNK($1,$2); IGN($2); LNK($3,$4); LNK($2,$4); }

| localvarids PCOLON subrange PSEMICOLON

{ LNK($1,$2); CHGTAG($2,CTINT);

UP($2,$3); LNK($2,$4); }

;

localvarids : localentire_var { CHGTAG($1,PDEFVARID); $$=$1; }

| localvarids PCOMMA localentire_var { LNK($1,$3);$$=$3; }

;

localentire_var : PID { $$=$1; localize($1); }

| CREFID { $$=$1; CHGTAG($1,PID);

CHGID($1,PID); localize($1); }

;

9 The parser 111

procedure : pheading locals PBEGIN statements PEND PSEMICOLON

{ IGN($3); IGN($6); wend($4,$5); wsemicolon($4,$5);

scope_close(); }

| pheading PBEGIN statements PEND PSEMICOLON

{ IGN($5); wend($3,$4); wsemicolon($3,$4); scope_close(); }

| pheading PFORWARD PSEMICOLON { scope_close(); }

;

function : fheading PBEGIN { function=1; } statements PEND PSEMICOLON

{ function=0; wreturn($4, 1,NULL); IGN($6);

wsemicolon($4,$5); scope_close(); }

| fheading locals PBEGIN { function=1; }

statements PEND PSEMICOLON

{ function=0;

if (!wlocal_value($1,$3,$6))

{ IGN($3); wreturn($5,1,NULL); }

wsemicolon($5,$6);

IGN($7);

scope_close();

}

;

pid : PID { scope_open(); $$=$1; START_PARAM; }

| PPROCID { scope_open(); $$=$1; START_PARAM; }

| PFUNCID { scope_open(); $$=$1; START_PARAM; }

;

pheading : PPROCEDURE pid PSEMICOLON

{ LNK($1,$3); CHGSNO($1,$2); CHGTYPE($2,$1); CHGID($2,PPROCID);

CHGVALUE($2,1); IGN($3); }

| PPROCEDURE pid POPEN formals PCLOSE PSEMICOLON

{ LNK($1,$3); CHGSNO($1,$2); CHGTYPE($2,$1); CHGID($2,PPROCID);

CHGVALUE($2,param_mask); LNK($4,$5); IGN($6); }

;

fheading : PFUNCTION pid PCOLON typename PSEMICOLON

{ $$=$2; LNK($1,$3); CHGSNO($1,$2); CHGTYPE($2,$1);

CHGID($2,PFUNCID); CHGVALUE($2,1);IGN($3); LNK($3,$5); IGN($5); }

| PFUNCTION pid POPEN formals PCLOSE

PCOLON typename PSEMICOLON { $$=$2; LNK($1,$3); CHGSNO($1,$2);

CHGTYPE($2,$1); CHGID($2,PFUNCID); CHGVALUE($2,param_mask);

LNK($4,$5); LNK($5,$6); IGN($6); LNK($6,$8); IGN($8); }

;

formals : formalparameters { $$=$1; }

| formals PSEMICOLON formalparameters
{ LNK($1,$2); CHGTAG($2,PCOMMA); $$=$3; }

;

112 9 The parser

formalparameters : params PCOLON typename
{ LNK($1,$2); IGN($2); $$=$2; }

;

params : param { $$=$1; }

| params PCOMMA param { LNK($1,$3);$$=$3; }

;

param : localentire_var { NEXT_PARAM; CHGTAG($1,PDEFPARAMID); $$=$1; }

| PVAR localentire_var { REF_PARAM; NEXT_PARAM; IGN($1);

CHGTAG($2,PDEFREFID);CHGID($2,CREFID); $$=$2; }

;

proc_stmt : PPROCID POPEN args PCLOSE { CHGTAG($1,PCALLID); $$=$1;

UP($2,$1); pchar2string($1,$3); }

| PCALLID POPEN args PCLOSE

{ $$=$1; UP($2,$1); pchar2string($1,$3); }

| PPROCID { CHGTAG($1,PCALLID); $$=$1; }

| PCALLID { $$=$1; }

;

function_call : PFUNCID POPEN args PCLOSE

{ CHGTAG($1,PCALLID); $$=$1; UP($2,$1); pchar2string($1,$3); }

| PCALLID POPEN args PCLOSE

{ $$=$4; UP($2,$1); pchar2string($1,$3); }

| PFUNCID { CHGTAG($1,PCALLID);$$=$1; }

| PCALLID { $$=$1; }

;

args : arg { $$=$1; }

| args PCOMMA arg
{ if ($3==NULL) $$=$1; else if ($1==NULL) $$=$3;

else $$=join(PCOMMA,$1,$3,0); }

;

arg : expression { $$=$1; }

| write_arg { $$=$1; }

| STRING { $$=$1; }

| CHAR { $$=$1; }

;

write_arg : expression PCOLON expression { $$=$2; }

;

statements : statement { $$=$1; }

| statements PSEMICOLON statement
{ $$=join(PSEMICOLON,$1,$3,0); }

;

9 The parser 113

statement : stmt { $$=$1; }

| label PCOLON stmt { clabel($1,0);$$=join(PCOLON,$1,$3,0); }

| PEXIT PCOLON stmt
{ IGN($1); IGN($2); $$=join(PCOLON,$1,$3,0); }

;

goto_stmt : PGOTO label { clabel($2,1); $$=join(PGOTO,$2,NULL,0); }

| PGOTO PEXIT { IGN($1); $$=$2; }

| CIGNORE PEXIT { $$=$2; }

| PRETURN { if (function) clabel($1,1);

else { CHGTAG($1,CPROCRETURN);$1->sym_ptr->goto_count++; }

$$=$1; }

;

label : PINTEGER

| NMACRO

| CLABEL

| NMACRO PPLUS PINTEGER { seq($1,$3); $$=$1; }

;

stmt : simple_stmt
| structured_stmt
;

simple_stmt : empty_stmt
| assign_stmt
| return_stmt
| goto_stmt
| proc_stmt
;

empty_stmt : { $$=join(CEMPTY,NULL,NULL,0); }

;

assign_stmt : variable PASSIGN expression { $$=$2; pvar_string($1,$3);}

| variable PASSIGN STRING { $$=$2; pvar_string($1,$3); }

| variable PASSIGN POPEN STRING PCLOSE

{ $$=$2; pvar_string($1,$4); }

;

return_stmt : PFUNCID PASSIGN expression { $$=$1; }

| CRETURN CIGNORE expression { $$=$1; }

| CRETURN CIGNORE expression CIGNORE CIGNORE

{ $$=join(CRETURN,NULL,NULL,0); }

| CRETURN { $$=$1; }

| CPROCRETURN { $$=$1; }

;

114 9 The parser

structured_stmt : compound_stmt
| conditional_stmt
| repetitive_stmt
;

compound_stmt : PBEGIN statements PEND

{ $$=join(PBEGIN,$2,NULL,0); wsemicolon($2,$3); }

;

conditional_stmt : if_stmt
| case_stmt
;

if_stmt : PIF expression PTHEN statement { $$=join(PIF,$4,NULL,0); }

| PIF expression PTHEN statement PELSE statement
{ wsemicolon($4,$5); $$=join(PELSE,$4,$6,0); }

;

case_stmt : PCASE expression POF case_list PEND { LNK($1,$3);

wsemicolon($4,$5);$$=join(PCASE,$4,NULL,0); }

| PCASE expression POF case_list PSEMICOLON PEND

{ LNK($1,$3);$$=join(PCASE,$4,NULL,0); }

;

case_list : case_element
| case_list PSEMICOLON case_element { $$=join(CCASE,$1,$3,0);

wsemicolon($1,$2); CHGTAG($2,CBREAK); UP($2,$1); }

| case_list CBREAK case_element
{ $$=join(CCASE,$1,$3,0); /* etex parses same module twice */ }

;

case_element : case_labels statement { $$=$2; }

| POTHERS statement { $$=$2; }

;

case_labels : case_label PCOLON { winsert_case($1, $2); }

| case_label PCOMMA { winsert_case($1,$2);

CHGTAG($2,CCOLON); CHGTEXT($2,": "); } case_labels
| case_label CCOLON { winsert_case($1,$2); } case_labels
;

9 The parser 115

case_label : PINTEGER { $$=$1; }

| NMACRO { USE_NMACRO($1); $$=$1; }

| PINTEGER PPLUS NMACRO { USE_NMACRO($3); $$=$1; }

| NMACRO PPLUS NMACRO { USE_NMACRO($1); USE_NMACRO($3); $$=$1; }

| NMACRO PPLUS PINTEGER { USE_NMACRO($1); $$=$1; }

| NMACRO PMINUS NMACRO PPLUS NMACRO

{ USE_NMACRO($1); USE_NMACRO($3); USE_NMACRO($5);$$=$1; /* eTeX */ }

| CCASE NMACRO { USE_NMACRO($2); $$=NULL; }

| CCASE PINTEGER { $$=NULL; }

| CCASE NMACRO PPLUS NMACRO

{ USE_NMACRO($2); USE_NMACRO($4); $$=NULL; }

;

repetitive_stmt : while_stmt
| repeat_stmt
| for_stmt
;

while_stmt : PWHILE expression PDO statement
{ LNK($1,$3); $$=join(PWHILE,$4,NULL,0); }

;

repeat_stmt : PREPEAT statements PUNTIL expression
{ wsemicolon($2,$3); $$=join(PREPEAT,$2,NULL,0); }

;

for_stmt : PFOR PID PASSIGN expression PTO varlimit PDO statement
{ for_loop_variable($2,$1->line_no,0,0);

DBG(dbgstmt,"for variable %s, limit variable in line %d\n",

SYM($2)->name,$2->line_no);

$$=join(PFOR,$8,NULL,0);LNK($1,$5);LNK($5,$7); }

| PFOR PID PASSIGN expression PTO iconst PDO statement
{ for_loop_variable($2,$1->line_no,$6->value,1);

DBG(dbgstmt,"for variable %s, limit up in line %d\n",

SYM($2)->name,$2->line_no);

$$=join(PFOR,$8,NULL,0);LNK($1,$5);LNK($5,$7); }

| PFOR PID PASSIGN expression PDOWNTO iconst PDO statement
{ for_loop_variable($2,$1->line_no,$6->value,-1);

DBG(dbgstmt,"for variable %s, limit down in line %d\n",

SYM($2)->name,$2->line_no);

$$=join(PFOR,$8,NULL,0);LNK($1,$5);LNK($5,$7); }

;

varlimit : variable
| variable PMINUS expression
| variable PPLUS expression
| iconst PSTAR expression
;

116 9 The parser

simple_variable : PID { USE($1); }

| CREFID { USE($1); }

;

compound_variable : indexed_var
| field_var
| file_var
;

variable : simple_variable
| compound_variable
;

indexed_var : variable PSQOPEN expression PSQCLOSE

{ $$=join(PSQOPEN,$1,$3,0); }

| variable PSQOPEN STRING PSQCLOSE

{ $$=join(PSQOPEN,$1,$3,0); }

| PARRAYFILEID PSQOPEN expression PSQCLOSE

{ $$=join(PSQOPEN,$1,$3,0); }

;

field_var : variable PDOT PID { $$=join(PDOT,$1,$3,0); }

;

file_var : variable PUP { $$=join(PUP,$1,NULL,0); }

;

expression : simple_expr { $$=$1; }

| simple_expr relop simple_expr
{ pvar_string($1,$3); $$=join($2->tag,$1,$3,0); }

| simple_expr PEQ STRING

{ pvar_string($1,$3); $$=join(PEQ,$1,$3,0); }

;

relop : PEQ

| PNOTEQ

| PLESS

| PLESSEQ

| PGREATER

| PGREATEREQ

;

simple_expr : term { $$=$1; }

| sign term { $$=$2; }

| simple_expr addop term { $$=$2; }

| simple_expr addop sign term { $$=$2; }

;

9 The parser 117

sign : PPLUS

| PMINUS

;

addop : PPLUS

| PMINUS

| POR

;

term : factor { $$=$1; }

| term mulop factor { $$=$2; }

;

mulop : PSTAR

| PSLASH { DBG(dbgslash,"Pascal / in line %d\n",$1->line_no); }

| PDIV

| PMOD

| PAND

;

factor : variable { $$=$1; }

| unsigned_const { $$=$1; }

| POPEN expression PCLOSE { $$=$2; }

| function_call
| PNOT factor { $$=$1; }

;

unsigned_const : real
| PINTEGER

| NMACRO { USE_NMACRO($1); }

| PSTRING

| PCHAR

| PCONSTID

;

real : PREAL

| PINTEGER PDOT PINTEGER { $$=$2; /* used in line 2361 */}

;

%%

const char *tagname(int tag)

{ return yytname[YYTRANSLATE(tag)];

}

119

10 Generating TEX, Running TEX, and Passing the
Trip Test
Here I give a step by step instruction on how to get TEX up and running and finally,
how to pass Donald Knuth’s trip test.

I assume that you have a Unix/Linux system with a terminal window but
other operating systems might work as well as long as you have access to the
Internet (I need files from www.ctan.org), an unzip program (because packages
on www.ctan.org come in .zip files), and a C compiler.

The recommended, short, and easy way is to start with the file ctex.w the cweb
version of tex.web. After all, this is the reason for the whole web2w project: to
provide you with a cweb version of TEX that is much easier to use than the original
WEB version of TEX. But if you insist, there is also a subsection below that explains
how to get web2w up and running and use it to generate the ctex.w file.

10.1 Generating TEX

1. The web2w package can be downloaded from www.ctan.org. Alternatively you
can download it from the HINT project web site at hint.userweb.mwn.de where
you might also find more recent development versions. Expand the files, open a
terminal window, and navigate to the root directory of the package. This direc-
tory will be called the web2w directory in the following. It contains a Makefile
that contains most of the commands that are explained in the following.

2. In the web2w directory are the files ctex.c and ctex.tex. If you want to use
them, go to step 7; if you want to build them yourself, continue with the next
step.

3. TEX and web2w are written as literate programs. To use them, you need the
cweb tools ctangle and cweave that I build now.

Since the TEX program is a pretty big file, you might not be able to use the
standard configuration if you have ctangle and cweave already installed.

Now download the cweb package from www.ctan.org and expand the files in
the web2w directory creating the subdirectory cweb.

Change to this subdirectory and try make. If it builds ctangle and cweave
(using the preinstalled programs) skip the next step.

4. If it complains that it can not find ctangle then it’s trying to bootstrap ctangle
from ctangle.w without having ctangle to begin with. Try touch *.c and try
make again. This time it should try to make ctangle from ctangle.c and
common.c, running:
cc -g -c -o ctangle.o ctangle.c

120 10.2 Generating TEX, Running TEX, and Passing the Trip Test

cc -g -DCWEBINPUTS="/usr/local/lib/cweb" -c common.c
cc -g -o ctangle ctangle.o common.o

Now you should have ctangle. Then building cweave should be no problem by
running make.

5. Next you need to patch ctangle.w, cweave.w, and common.w to enlarge the
settings for various parameters. Change to the cweb subdirectory and run the
commands
patch --verbose cweave.w ../cweave.patch
patch --verbose ctangle.w ../ctangle.patch
patch --verbose common.w ../common.patch
make

If you do not have the patch program, look at the patch files and read them as
instructions how to change the settings in ctangle.w, cweave.w, and common.w;
you can do these small changes easily with any text editor yourself.

The final make should produce a new ctangle and cweave by running the old
ctangle on the new ctangle.w, cweave.w, and common.w. The cweb directory
contains change files to adapt the programs to particular operating systems and
it might be a good idea to use them. On an Win32 machine, for example, you
might want to write
./ctangle ctangle.w ctang-w32.ch
./ctangle cweave.w cweav-w32.ch
./ctangle common.w comm-w32.ch
Then run the C compiler again as in the previous step.

6. Now you use your extra powerful ctangle and cweave from step 5, return to
the web2w directory, and generate ctex.c and ctex.tex simply by running the
commands
cweb/ctangle ctex.w
cweb/cweave ctex.w

7. Compiling ctex.c is pretty easy: use the command
cc ctex.c -lm -o ctex

The -lm tells it to link in the C math library. You may add other options like -g
or -O3 as you like. What you have now is the virgin TEX program (also called
VIRTEX).

8. If you have TEX on your system, you can generate the documentation with the
command
tex ctex.tex or pdftex ctex.tex.

Otherwise, you will have to wait until step 16.
Note that the above commands will need the files ctex.idx and ctex.scn.

These are part of the web2w package and are produced as a side effect of running
cweave on ctex.w.

10.2 Running TEX

9. Producing “Hello world!” with ctex.
There are some differences between the virgin TEX that you have generated

now and the TEX that you get if you install one of the large and convenient

10.2 Running TEX 121

TEX distributions. First, there is no sophisticated searching for font files, for-
mats, and tex input files (as usually provided by the kpathsea library), instead
files are looked up in the current directory or in the subdirectories TeXfonts,
TeXformats, and TeXinputs. Second, the plain TEX that you have now does
not come with preloadable format files, you have to generate them first. So let’s
get started with populating the subdirectories just mentioned with the necessary
files from the www.ctan.org archives.

The first file is the plain.tex file. You find it on www.ctan.org in the lib
subdirectory of systems/knuth/dist/. This file defines the plain TEX format;
save it to the TeXinputs subdirectory.

Now, do the same for the file hyphen.tex (same source same destination
directory) containing basic hyphenation patterns.

10. Next, you need the TEX font metric files. Download the package “cm-tfm—
Metric files for the Computer Modern fonts” from www.ctan.org and unpack
the files in tfm.zip into the TeXfonts subdirectory.

11. Now you need to create cinitex, a special version of TEX that is able to initialize
all its internal data structures and therefore does not depend on format files;
instead it can be used to create format files. Special versions of ctex can be
created by defining the C macros DEBUG, INIT, or STAT on the command line.
So (compare step 7) run the command
cc -DINIT ctex.c -lm -o cinitex

12. Ready? Start cinitex and see what happens. The dialog with cinitex should
follow the outline below. TEX’s output is shown in typewriter style, your input
is shown in italics.
This is TeX, Version 3.14159265 (HINT) (INITEX)
**plain
(TeXinputs/plain.tex Preloading the plain format: codes,
registers, parameters, fonts, more fonts, macros,
math definitions, output routines,
hyphenation (TeXinputs/hyphen.tex))
*Hello world!

*\end
[1]
Output written on plain.dvi (1 page, 224 bytes).
Transcript written on plain.log.

Well that’s it. You should now have a file plain.dvi which you can open with
any run-of-the-mill dvi-viewer.

13. To do the same with the virgin ctex program, you need a plain.fmt file which I
produce next. Start cinitex again. This time your dialog should be as follows:
This is TeX, Version 3.14159265 (HINT) (INITEX)
**plain \dump
(TeXinputs/plain.tex Preloading the plain format: codes,
registers, parameters, fonts, more fonts, macros,
math definitions, output routines,

122 10.2 Generating TEX, Running TEX, and Passing the Trip Test

hyphenation (TeXinputs/hyphen.tex))
Beginning to dump on file plain.fmt
(preloaded format=plain 1776.7.4)
1338 strings of total length 8447
4990 memory locations dumped; current usage is 110&4877
926 multiletter control sequences
\font\nullfont=nullfont

...

14707 words of font info for 50 preloaded fonts
14 hyphenation exceptions
Hyphenation trie of length 6075 has 181 ops out of 500
181 for language 0
No pages of output.
Transcript written on plain.log

Now you should have a file plain.fmt. Move it to the TeXformats/ subdirectory,
where plain ctex will find it, and you are ready for the final “Hello world!” step.

14. Start the virgin ctex program and answer as follows:
This is TeX, Version 3.14159265 (HINT) (no format preloaded)
**&plain
*Hello world!
*\end
[1]
Output written on texput.dvi (1 page, 224 bytes).
Transcript written on texput.log

The “&” preceding “plain” tells TEX that this is a format file. Your dvi output
is now in the texput.dvi file.

15. If you have ctex.tex from step 6, ctex from step 7, and plain.fmt from
step 13, producing ctex.dvi using ctex itself seems like a snap. Running
ctex on ctex.tex will, however, need the include file cwebmac.tex which you
should have downloaded already with the cweb sources in step 3; copy it to the
TeXinputs/ subdirectory. Then ctex.tex will further need the logo10.tfm file
from the mflogo fonts package. Download the file from the fonts/mflogo/tfm
directory (part of the mflogo package) on www.ctan.org and place it in the
TeXfonts subdirectory.

Unfortunately TEX is a real big program and you need not only a super
ctangle and cweave, you need also a super TEX to process it. The out-of-the
box ctex will end with a “! TeX capacity exceeded, sorry [main memory
size=30001].”

So the next step describes how to get this super TEX.

16. Take your favorite text editor and open the file ctex.w. Locate the line (this
should be line 397) where it says enum {@+@!mem_max=30000@+}; and change
the size to 50000. (You see how easy it is to change the code of TEX now?) It
remains to run ctangle and cc to get the super ctex:

10.4 Generating ctex.w from tex.web 123

cweb/ctangle ctex.w
cc ctex.c -lm -o ctex
Now start super ctex and answer &plain ctex. You should get ctex.dvi

10.3 Passing the Trip Test

17. Passing the trip test is the last proof of concept!
Download the package tex.zip from www.ctan.org which contains the files

of systems/knuth/dist/tex (this is the original TEX distribution by Donald E.
Knuth) and extract the files into the tex subdirectory of web2w (see also step 21
below).

Perform all the steps described in tripman.tex in the tex subdirectory (you
might want to create a dvi file with ctex before reading it) replacing “tex.web”
by “ctex.w” and “tangle” by “ctangle”. You should encounter no difficulties
(if yes, let me know) if you observe the following hints:
• Make a copy of ctex.w and modify the setting of constants as required by step

2 of Knuths instructions. If you have the patch program, you might want to
use the file triptest.patch to get these changes.

• After generating ctex.c from the modified ctex.w by running ctangle, com-
pile ctex.c with the options -DINIT and -DSTAT like this:
cc -DINIT -DSTAT ctex.c -lm -o cinitex

Instead of setting init and stats in ctex.w, use the -D command line options.

10.4 Generating ctex.w from tex.web

18. To create ctex.w from tex.web, you need to build web2w, which is written as a
literate program. So you can start building it from the file web2w.w or use the
file web2w.c which comes with the web2w package. In the latter case, you can
skip the next step.

19. You create web2w.c and web2w.h from web2w.w by running
ctangle web2w.w or cweb/ctangle web2w.w

Any ctangle program should work here, but it doesn’t harm if you use your
own ctangle created in step 5.

I do not describe how to produce web2w.pdf from web2w.w: First, because
you seem to have that file already if you are reading this, and second, because
it is a much more complicated process. In addition, if you like reading on paper
and prefer a nicely bound book over a mess of photocopies, you can buy this
document also as a book titled “WEB to cweb”[8].

20. From web2w.c, web2w.h, web.l, and pascal.y, you get web2w by running
flex -o web.lex.c web.l
bison -d -v pascal.y
cc -o web2w web2w.c web.lex.c pascal.tab.c
The first command produces the scanner web.lex.c; the second command

produces the parser in two files pascal.tab.c and pascal.tab.h. If your
version of bison does not support an API prefix, you can use the option -p pp
instead. The last command invokes the C compiler to create web2w.

124 10.1 Generating TEX, Running TEX, and Passing the Trip Test

21. Next you want to run tex.web through web2w. To obtain tex.web download
the package tex.zip from www.ctan.org which contains the files of the original
TEX distribution by Donald E. Knuth in directory systems/knuth/dist/tex
and extract the files into the tex subdirectory of web2w (see also step 17).

22. Now you are ready to apply web2w. Run the command
./web2w -o tex.w tex/tex.web

This command will produce tex.w, but you are not yet finished yet. you have
to apply the patch file ctex.patch to get the finished ctex.w like this:
patch --verbose -o ctex.w tex.w ctex.patch

And ctex.w has been created.

125

References

[1] C. O. Grosse-Lindemann and H. H. Nagel. Postlude to a PASCAL-compiler
bootstrap on a DECsystem-10. Software: Practice and Experience, 6(1):29–42,
1976.

[2] Donald E. Knuth. The WEB system of structured documentation. Stanford
University, Computer Science Dept., Stanford, CA, 1983. STAN-CS-83-980.
https://ctan.org/pkg/cweb.

[3] Donald E. Knuth. TEX: The Program. Computers & Typesetting, Volume B.
Addison-Wesley, 1986.

[4] Donald E. Knuth. Literate Programming. CSLI Lecture Notes Number 27.
Center for the Study of Language and Information, Stanford, CA, 1992.

[5] Donald E. Knuth. The Art of Computer Programming. Addison Wesley, 1998.

[6] Donald E. Knuth and Silvio Levy. The CWEB System of Structured Documenta-
tion. Addison Wesley, 1994. https://ctan.org/pkg/cweb.

[7] Martin Ruckert. Converting TEX from WEB to cweb. TUGboat, 38(3):353–358,
2017.

[8] Martin Ruckert. WEB to cweb. KDP, 2017. ISBN 1-548-58234-4.
https://amazon.com/dp/1548582344.

[9] Martin Ruckert. HINT: Reflowing TEX output. TUGboat, 39(3):217–223, 2018.

[10] Martin Ruckert. The design of the HINT file format. TUGboat, 40(2):143–146,
2019.

[11] Martin Ruckert. HINT: The File Format. KDP, 2019. ISBN 1-079-48159-1.

[12] TEX User Group, https://tug.org/web2c. Web2c: A TEX implementation.

127

Index

Symbols
¬ 75
(38, 45
(#) 31
) 38, 45
.. 54
= 31, 38
== 31
@ 18
@! 55
@+ 42, 54
@/ 57
@; 57, 77
@< 29, 44
@> 29
@>= 29
@$ 40
@d 31
@f 31
@p 30
38, 45, 61
{ 18, 26, 28, 54
} 3, 18, 26, 28, 77
| 18
0.x version vi, ix
1.y version vi, ix

__VA_ARGS__ 92

A
abs 47
ADD 21, 28
add_char 22
add_module 29
add_string 21–23
add_token 20, 25, 66
addop 116
alfanum 49–51

arg 58
arg 112
arg_count 23, 33, 60–65
argc 15, 87
args 112
argument list 80
argv 15, 87
arith_error 92
arity 23, 34, 61–65
array 4, 70
array size v
array_type 91
array_type 109
assign_stmt 113
assignment 4, 77, 82
AT_GREATER 30
AT_GREATER_EQ 30
ATAND 39, 102
ATAT 102
ATBACKSLASH 33, 39, 52, 102
ATBAR 33, 39, 102
ATCOMMA 33, 39, 102
ATCTL 21, 33, 39, 52, 67, 102
ATD 59, 102
ATDOLLAR 40, 43, 57, 102
ATEX 39, 54–56, 102
ATF 60, 102
ATGREATER 30, 57, 102
atgreater 29, 44
ATHASH 33, 39, 102
ATLEFT 39, 53, 102
ATLESS 44, 56, 102
atless 29
ATP 34, 102
ATPLUS 33, 39, 42, 54, 102
ATQM 39, 52, 102
ATRIGHT 39, 53, 102
ATSEMICOLON 33, 39, 54, 57, 78, 102
ATSLASH 33, 39, 42, 57, 102

128 Index

ATSPACE 75, 102
ATSTAR 75, 102

B
backend vi
backslash 18
bad 10
badness 4
BAR 42, 101
baselength 87–89
basename 87
basename 87–90
BEGIN 21, 28
begin 54
begin 84
binary search tree 28
bison 5, 37, 46
bool 92
BOS 21
break 73–75
break 47
break_in 47
buf_size 9
build-in function 54
builtin_type 107, 110

C
case x, 5, 11, 45, 73
case label 73
case_element 77
case_element 114
case_label 114
case_labels 114
case_list 75
case_list 114
case_stmt 114
CBREAK 74, 105, 114
CCASE 73–75, 78, 82, 105, 115
CCOLON 73, 105, 114
CEMPTY 75, 78, 82, 105
CHAR 32, 40, 44, 57, 59, 102, 112
char 9, 57
char_info 61
char_info 11
CHECK 20, 24–27, 29, 38, 43–45, 51, 56,

70, 76, 79, 81–83, 92
CHGID 31
CHGSNO 31
CHGTAG 31, 85

CHGTEXT 31
CHGTYPE 31
CHGVALUE 31
chr 47
CIGNORE 7, 33, 52, 65, 67, 78, 82, 104,

113
cinitex 121
CINT 105
CINTDEF 55, 67, 105
CLABEL 65, 78, 104, 113
clabel 65
CLABELN 66, 104
CLOSE 101
close ix, 47, 56, 81
CMAIN 85, 91, 105
CMAINEND 85, 105
columns 49–51, 56
comma 49
comma 49–51
command line 87
comment 27, 40, 52
compiling 120
compound_stmt 114
compound_variable 116
condition 92
conditional_stmt 114
const 12
constant declaration 67
constants 105
constdefinition 106
constdefinitions 105
conststringdefinition 105
continue 56
CONTROL 17, 21
convertible 33
COPY 21
copy_string 21–24
count 61, 64
count_arity 61
CPROCRETURN 75, 78, 80, 82, 105, 113
CREFID 25, 58, 80, 105, 109, 116
CRETURN 78, 82–84, 105, 113
CSEMICOLON 66, 74, 77–79, 102
CSTRDEF 55, 67, 105
CTAN 119
ctangle 77, 119
ctex.c 119
ctex.tex 119
CTINT 7, 69, 105
CTL 21

Index 129

CTLOCAL 7, 52, 105
CTSUBRANGE 7, 69, 105
CUNION 70, 105
current_arg 63
current_macro 63–65
current_string 22
cweave 119
cweb 119
cwebmac.tex 5

D
DBG 19, 22, 24, 27, 29, 32–34, 38, 42–46,

51, 55, 58, 60, 62, 66, 68–72, 74,
77–85, 90, 93

dbgarray 70, 93
dbgbasic 19, 22, 24, 29, 92
dbgbison 88, 92
dbgbreak 75, 93
dbgcweb 42, 51, 55, 60, 68–70, 72, 79–82,

84, 92
dbgexpand 32, 38, 44, 92
dbgflex 88, 92
dbgid 35, 60, 90, 92
dbgjoin 46, 92
dbglink 27, 92
dbgmacro 32–34, 62, 92
dbgnone 92
dbgparse 92
dbgpascal 39, 92
dbgreturn 66, 79, 83, 93
dbgsemicolon 78, 93
dbgslash 55, 92
dbgstmt 74, 77, 92
dbgstring 43, 58, 68, 92
dbgtoken 34, 92
DBGTOKS 37, 93
DBGTREE 46, 93
dbgtypes 93
dead_end 74
DEBUG 41, 121
Debug 41
debug 41
debugflags 34, 88, 92
debugging 19, 34, 41, 51, 76, 87, 92
debugmode 92
DECsystem-10 1
DEF_MACRO 32
def_macro 31
default 75

define 41
DEFINITION 17, 31
definition 31
direction 76
division 54
do 5, 75
done6 12
dotdot 54
double 55
double hashing 24
double quote 7
downto 76
dvi_buf_size 10

E
ε-TEX vii, 13
ebook vi
element type 70
element_type 70, 91
ELIPSIS 29, 56, 102
ellipsis 28
else 4, 75, 77
empty statement 77
empty_string 67
empty_stmt 113
end 77
end v, 32, 37–39, 52, 75, 80, 84
END_CTL 21
end of file 34, 40
end_string 21–23
endif 41
entire_var 109
enum 12
environment 45
environment 37, 46
EOF 90
eof 47
eoln 47
EOS 21, 28
EQ 30, 102
EQEQ 43, 53, 60, 102
ERROR 19, 22, 37, 39, 43, 60, 62, 65, 69,

72, 76, 83, 89–92
error handling 92
error_line 10
error message 37, 89
erstat 47
exit 3, 56, 66, 78, 87, 92
exit_no 66, 78

130 Index

exports_name 88–91
expression 112–117
extern 34, 89–91
extern_symbols 90

F
f_no 84
factor 117
false 47
fclose 91
FFFF 10
fflush 92
fheading 111
field declaration 70
field_var 116
fields 107
FILE 72
file 72
file buffer 72
file_name_size 10
file_type 107
file_var 116
final_end 66
find_module 29, 44
FIRST_PASCAL_TOKEN 38, 103
first_token 20, 30, 34, 46, 51
flags 93
flex 5, 17
float_constant 55
float_constant_no 55
floating point division 55
flush_string 23
fmt_file 72
following_directive 42, 54
font_max 9
font_mem_size 9
font metric file 121
fopen 89
for 5, 73, 76
for_loop_variable 76
for_stmt 115
formalparameters 111
formals 111
FORMAT 17, 31
format declaration 59
format specification 31
found 39, 43, 45, 66
fputc 49–51
fread 72

free 56
free_locals 25
free_modules 29
free_strings 22
free_symbols 23, 35
free_tokens 19
freopen 89
from 54, 64, 69–71, 93
frontend vi
function 72, 82
function 110
function header 82
function identifier 82
function_call 112, 117

G
generate_constant 71
generating TEX 119
get 47, 72
getc 90
getval 43, 58
global symbol 25, 40
globals 25
globals 105
glue_shrink 55
glue_stretch 55
goto 3, 12, 25, 65, 74, 78, 80
goto_count 12, 23, 65, 79, 83
goto_stmt 113
grammar 101
grouping 28
gubed 41

H
half_error_line 10
halfword 10
HASH 46, 62–65, 101
hash 24
hash_extra 10
hash_offset 10
hash_prime 10
hash_size 10
hash table 24
hash_top 10
HEAD 20, 101
header_section 88–90
Hedrick, Charles 1
help_line 13
help_ptr 13

Index 131

HEX 32, 40, 44, 53, 102
hexadecimal constant 40
hi 69–71
HINT vi
hsize vii
hyph_size 9
hyphen.tex 121

I
iconst 106, 109, 115
ID 24, 40, 55, 102
id 31, 58, 76
identifier 23, 31, 40, 55
if 3, 10, 41, 73
if_stmt 114
ifdef 41
IGN 52, 83
incomplete module name 28
INDENT 33, 39, 54, 67, 102
index 55
index 70
index type 70
indexed_var 116
inf_bad 4
INI 8
init 41, 123
INITIAL 17
initialization 41
input file 89
int x, 5, 7, 56, 76
INT16_MAX 69
INT16_MIN 69
INT32_MAX 69
INT32_MIN 69
INT8_MAX 69
INT8_MIN 69
integer 7, 54
internal node 18, 46
internal_register ix
is_extern 23, 34, 68, 79, 82, 85, 90
is_global 23, 68
is_int 23, 68, 77
is_label 23, 26, 60, 65
is_pascal 32, 62, 65
is_string 23, 57–59, 68
is_zero_based 23, 71, 91
isalnum 49, 90
isspace 56

J
join 46

K
Knuth, Donald E. v, vii, 1, 123

L
label 65
label 78
label 113
label declaration 65
labeldecl 105, 110
labellist 105
labels 105
last_token 20, 28, 30, 32, 51
LATEX vii
leaf node 18
left 27, 29, 46
level 51
lex 17
limbo 17
line number 19
literate programming vii, 1
LNK 54
lo 69–71
local label 66
local symbol 24, 40
localentire_var 110, 112
localize 25
locallabeldecl 110
locallabellist 110
locals 25
locals 110
localvardeclaration 110
localvardeclarations 110
localvariables 110
localvarids 110
log file 89
logfile 89, 92

M
macro 37
macro 64
macro declaration 59
macro definition 63
macro expansion 27, 44
macro parameter 31
main 13, 15, 92
main_memory 9

132 Index

main program 85
make_string 67
max_halfword 10
max_in_open 9
MAX_LOCALS 25
MAX_MODULE_TABLE 29
MAX_NAME 87, 90
MAX_PPSTACK 37
max_print_line 10
max_quarterword 10
MAX_STRING_MEM 22
max_strings 9
MAX_SYMBOL_TABLE 23
MAX_SYMBOLS 23, 35
MAX_TOKEN_MEM 19
MAX_WW_STACK 26
mem 10
mem_bot 9
mem_max 10
mem_min 10
mem_top 10
memory_word 10, 72
MESSAGE 35, 92
message 92
message 37
meta-comment 52
METACOMMENT 33, 39, 52, 102
MIDDLE 17, 21, 28, 30
min_quarterword 74
mk_logfile 87–89
mk_pascal 87–89
MLEFT 28, 32, 40, 53, 101
module 17, 27
module 29
module_cmp 28
module name 28, 37, 44, 56
module_name_cmp 28
module name expansion 44
module_root 29
module table 28
module_table 29
mulop 117

N
NAME 17, 30
nest_size 4, 9
new_character 3
new_null_box 1
new_string 21–23

new_symbol 24, 26
new_token 19, 46, 74
newline 56
next 18, 20, 28, 32–35, 37–46, 52–57,

59–85, 91, 93
NEXT_PARAM 81
NL 33, 39, 42, 54, 57, 67, 70, 101
NMACRO 25, 31–33, 40, 42, 45, 55, 60,

65, 72, 102, 105, 107, 110, 113,
115, 117

nmacro_tail 31
nmacros 31
nonterminal symbol 101
numeric macro 31, 60
numerical macro 42

O
obsolete 59
OCTAL 32, 40, 43, 53, 102
octal constant 40
odd 47
of 11
OMACRO 25, 31, 33, 43, 45, 55, 60, 64,

102
omacro_tail 31
omacros 31, 33
OPEN 61, 101
open 45, 61–63
option 87
option 87
ord 47
ordinary macro 31, 44
others 75
output file 89
output routine 49

P
packed 107, 109
page builder vi
PAND 53, 103, 117
PARAM 31, 102
param 82
param 112
param_bit 81
param_mask 80
param_size 9
parameter 38
parameter 38, 46
parameter list 80

Index 133

parameterless macro 60
parametrized macro 31, 38, 45, 61
params 112
PARRAY 67, 70, 91, 104, 109
PARRAYFILEID 25, 104, 116
PARRAYFILETYPEID 25, 104
parse tree 46
parser 37, 101
parsing 5, 37
PASCAL 17, 21, 28, 30
Pascal 37
Pascal-H 1
pascal.tab.c 46
pascal.tab.h 46
pascal.y 19, 46, 101
pass by reference 72, 80
PASSIGN 53, 78, 82, 103, 113, 115
patch file v, 5, 41, 54, 73, 124
PBEGIN 54, 75, 78, 82–85, 103, 105, 111,

114
PCALLID 58, 78, 81–83, 104, 112
PCASE 73, 78, 82, 104, 108, 114
PCHAR 32, 57, 103, 117
pchar2string 57, 59
PCLOSE 32, 62, 65, 79, 81, 103, 108,

111–113, 117
PCOLON 7, 58, 66, 70, 75, 78, 82, 104,

107–114
PCOMMA 53, 62, 64, 73, 81, 103, 105,

108–110, 112, 114
PCONST 67, 104
PCONSTID 25, 44, 47, 72, 104, 107, 117
PDEFCONSTID 25, 104
PDEFFUNCID 25, 104
PDEFPARAMID 25, 55, 79, 104
PDEFREFID 25, 79, 104
PDEFTYPEID 25, 55, 68, 104
PDEFTYPESUBID 25, 104
PDEFVARID 25, 55, 67, 70, 91, 104
PDIV 53, 55, 103, 117
PDO 73, 76, 103, 115
PDOT 103, 105, 116
PDOTDOT 54, 70, 104, 106, 109
PDOWNTO 76, 103, 115
PELSE 57, 75, 78, 82, 103, 114
PEND 70, 74, 77, 84, 103, 105, 107, 111,

114
PEOF 34, 40, 101
PEQ 53, 69, 103, 106, 116
PEXIT 67, 75, 78, 82, 104, 113

PFBEGIN 84, 104
PFEND 84, 104
PFILE 72, 104, 107
PFOR 76, 78, 82, 103, 115
PFORWARD 52, 104, 111
PFUNCID 25, 47, 55, 59, 78, 82, 104,

111–113
PFUNCTION 82, 91, 104, 111
PGOTO 75, 78, 82, 103, 113
PGREATER 103, 116
PGREATEREQ 103, 116
pheading 111
PID 25, 40, 55, 58, 68, 70, 91, 104–111,

115
pid 111
PIF 53, 73, 78, 82, 103, 114
PIN 104
PINTEGER 32, 40, 43, 58, 66, 70–72,

103, 105–108, 110, 113, 115, 117
PLABEL 52, 104, 110
plain.tex 121
PLEFT 28, 40, 53, 67, 101
PLESS 103, 116
PLESSEQ 103, 116
PMACRO 25, 31, 33, 45, 55, 60–64, 74,

102
pmacro_tail 31
pmacros 31, 34
PMINUS 33, 43, 72, 103, 106, 115, 117
PMOD 53, 103, 117
PNIL 53, 103
PNOT 53, 103, 117
PNOTEQ 53, 103, 116
POF 52, 70, 73, 104, 107–109, 114
pointer 7, 9
pool_free 9
pool_name 12, 67
pool_size 9
POP 28, 30, 34
POP_LEFT 28
POP_MLEFT 28
POP_NULL 28
POP_PLEFT 28
POPEN 32, 43, 45, 62, 64, 79, 81, 103,

108, 111–113, 117
popen 45
POR 53, 103, 117
POTHERS 75, 103, 114
pp_debug 87
pp_error 37

134 Index

pp_lex 37–39, 45, 74
pp_lval 37–39, 45
pp_out 39, 89
pp_parse 46
pp_pop 38, 44
pp_push 38, 44–46
pp_sp 37–40, 43–46, 66, 74
pp_stack 37–40, 43–46, 66
PPACKED 52, 91, 104, 107
PPLUS 33, 43, 66, 72, 103, 105–107, 110,

113, 115, 117
PPROCEDURE 79, 91, 104, 111
PPROCID 25, 47, 59, 104, 111
PPROGRAM 53, 104
pre_ctl_mode 21
PREAL 103, 117
PRECORD 69, 104, 107
predefine 47, 55, 59
predefined symbol 47
PREPEAT 75, 78, 82, 103, 115
preprocessor 41
PRETURN 65–67, 78, 82, 102, 113
PRETURNID 104
previous 18, 20, 31–33, 42, 46, 56, 69–

72, 74, 78, 82, 93
primitive 8, 58
print 9, 58
print_esc 9, 58
print_esc_no 59
print_nl 59
print_nl_no 59
print_no 58
printn 9, 58
printn_esc 9, 58
printn_esc_no 59
printn_no 58
proc_stmt 112
procedure 72, 79
procedure 110
procedure call 80
procedures 105, 110
PROGRAM 30, 34, 53
program 27
program 30, 46, 54
program 105
programheading 105
propagate_use 40
PSEMICOLON 52, 67, 70, 74, 77–79, 82,

103, 105–112, 114
PSET 104

PSLASH 55, 103, 117
PSQCLOSE 70, 103, 109, 116
PSQOPEN 70, 103, 109, 116
PSTAR 103, 115, 117
PSTRING 32, 57–59, 103, 106, 117
pstring2n 58, 81
PTHEN 53, 73, 103, 114
PTO 76, 103, 115
PTYPE 104, 106
PTYPEBOOL 53, 103, 107
PTYPECHAR 53, 70–72, 103, 107, 109
PTYPEINDEX 104
PTYPEINT 53, 104, 107
PTYPEREAL 53, 104, 107
PUNTIL 75, 103, 115
PUP 73, 104, 116
PUSH 28, 30, 34
PUSH_NULL 28
put 47
PVAR 52, 104, 109, 112
pvar_string 57
PWHILE 73, 78, 82, 103, 115
PWITH 104

Q
qi 74

R
read ix, 47, 56
read_ln 47
real 54
real 117
recids 107
record type 69
record_type 107
recordsection 107
REF_PARAM 81
reference 65
register 56
regular expression 17, 21
related token 26
relop 116
rem 92
remainder 56
repeat 75
repeat_stmt 115
repetitive_stmt 114
replacement text 38, 45
reserved words 56

Index 135

reset 47
return v, 1, 3, 66, 78, 80, 82–84
return 82
return type 82
return value 82
return_stmt 113
rewrite 47
RIGHT 28, 33, 53, 101
right 27, 29, 46
round 47
running TEX 119

S
save_size 10
scaled 92
scan_count 12, 23, 26, 34, 59, 65
scan_keyword 59
scan_keyword_no 59
scanner 5, 17, 31, 95
scanner action 21
scope 25
scope_close 25
scope_open 25
semantic value 38
semicolon 3, 74, 77, 79
SEQ 20, 30
seq 20, 54
sequence_no 19, 74–76, 92
sequence number 18
SETVAL 44
sign 71
sign 116
SIGN_BIT 81
signed 7
signed_iconst 106
simple_expr 116
simple_iconst 106
simple_stmt 113
simple_variable 116
size 71
sizeof 72
space 49
spaces 49
stack 18, 26, 28, 31, 37, 45
stack_size 10
start 32
START_PARAM 81
stat 41
statement 112–115

statement sequence 77

statements 105, 111, 114

static 13, 90–92

statistics 41

stats 123

stderr 87, 89

stdint.h 69

stmt 113

str 22, 49–51, 56, 58

str_pool 8

str_start 7

str_start_ 8

str number 7, 9, 57

strcat 89

strcmp 24, 29

STRING 32, 42, 57, 102, 112, 116

string 22, 27, 57

string 21

string_length 21–23

string_mem 22

string pool 7, 40, 57

string pool checksum 40, 57

string_type 68

string_vacancies 9

strings_free 9

strlen 29, 88

strncmp 29, 88

strncpy 88

strtol 43, 88

structure type 69

structured statement 73

structured_stmt 113

subrange 70

subrange 106, 109

subrange type 4, 69

succumb 41

switch 5, 11, 56

SYM_PTR 25, 34, 41, 56, 85, 90

SYMBOL 25

symbol 24

symbol_hash 24

symbol number 66

symbol pointer 66

symbol table 31, 80

symbol_table 23–26, 47, 90

symbols 23, 35

136 Index

T
TAG 44, 51, 72, 74, 83, 93
tag_known 39
tagname 19, 32, 35, 39, 55, 74, 92
tags 68
tail 63, 83
tail_call 33, 60, 63
tail position 3, 82
tangle 1, 5, 7, 17, 37
tats 41
term 116
terminal symbols 101
TEX 17, 21, 28, 30
TEX_area 8, 34
TEX_font_area 8, 34
TEX Live 1
TeXfonts 121
TeXformats 121
TeXinputs 121
TEXT 21, 30, 56, 101
text 19–21, 29, 31, 42–44, 51, 53, 56, 66,

70, 73, 78
THE_TOKEN 27, 35, 39, 92
time 13
tini 41
to 54, 64, 69, 76, 93
TOK 21, 28, 30, 34
TOK_RETURN 66
token 17, 31, 37, 101
token 18
token_mem 19
token2string 39, 44, 49, 51, 56, 69, 71, 92
toks 12
top_skip 12
total_shrink 55
total_stretch 55
trie_op_size 9
trie_size 9
trip test v, vii, 5, 119, 123
true 47
type 67
type 68
type 45
type 23, 31, 34, 63, 69, 80, 82, 85, 91
type 106–109
type declaration 68
type identifier 68, 80
type_name 69
typedef 68

typedefinition 106
typedefinitions 106
typename 107, 111
types 105

U
UINT16_MAX 69
uint16 t 10
UINT32_MAX 69
uint32 t 10
UINT8_MAX 69
uint8 t 10, 76
union 18
union type 69
University of Hamburg 1
unnamed module 37
unsigned 7
unsigned_const 117
until 75, 77
UP 69
up 18, 37, 58, 69, 74, 81
uppercase 88
usage 87
USE 40
use_count 12, 23, 25, 34, 40–42, 45, 59
USE_NMACRO 40

V
val 44, 58
value 12, 23, 31, 44, 46, 69, 72, 76, 80, 93
vardeclaration 109
vardeclarations 109
variable 113, 115–117
variable declaration 67, 80
variables 105, 109
VARIADIC 61–64
variadic macro 61
variant 108
variant part 69
variant_part 107
variants 108
varids 109
varlimit 115
varlist 67, 70, 80, 91
version 0.1 v
version 0.2 v
vsize vii

Index 137

W
w_file_name 87–89
wback 33, 75, 77
WDEBUG 41, 54, 102
WEB 1, 17
web.l 17, 19, 21, 95
web2w.c 15, 123
web2w.h 15, 21, 123
WEBEOF 34, 101
webmac.tex 5
wend 78
WGUBED 33, 41, 54, 102
while 73, 75
while_stmt 115
wid 56, 64, 68, 71, 76, 80, 85
win 89
WINIT 41, 55, 102
winsert_after 32, 74, 78
winsert_case 73
wlocal_value 84
wneeds_semicolon 77
wprint 49–55, 60, 64, 66–70, 72–76, 79,

82, 84, 91
wprint_args 61, 63
wprint_int 49, 71
wprint_pre 42, 49, 51, 53
wprint_str 49, 57
wprint_to 51, 60, 63, 65, 68–70, 72, 76,

79–82, 91
wput 12, 49–57, 60, 63–65, 70–73, 80
wputs 42, 49, 53–57, 60, 63, 66, 70, 73–

77, 79–82, 85, 90
wreturn 83
write ix, 47, 56
write_arg 112
write_ln 47
wsemicolon 77–79
wskip_to 52, 60
WSTAT 41, 55, 102
wtail 82
WTATS 33, 41, 102
WTINI 33, 41, 102
wtoken 51, 65, 67, 81
ww__flex_debug 87, 93
ww_in 17, 89
ww_lex 17
ww_lineno 19
ww_out 17, 89
ww_pop 26–28

ww_push 26–28
ww_sp 26–28
ww_stack 26–28
ww_text 21, 25
ww_top_is 26–28

X
x_over_n 92
x_over_n 84, 92
x_over_n_no 84
xclause 56
xn_over_d 84
xn_over_d_no 84

Y
yacc 37, 46
YY_START 21

Z

zero_based 70

138

	Preface
	Preface to the Second Edition
	Contents
	List of Figures and Tables
	Introduction
	Changes to unhbox voidb@x hbox {�am 	tfam 	entt web2w} in Version 1.0
	Converting unhbox voidb@x hbox {�am 	tfam 	entt WEBspacefactor 1000} to unhbox voidb@x hbox {�am 	tfam 	entt cweb}
	Reading the unhbox voidb@x hbox {�am 	tfam 	entt WEBspacefactor 1000}
	Parsing Pascal
	Writing the unhbox voidb@x hbox {�am 	tfam 	entt cweb}
	Running unhbox voidb@x hbox {�am 	tfam 	entt web2w}
	The scanner
	The parser
	Generating {unhbox voidb@x hbox {Tkern -.1667emlower .424exhbox {E}hskip -.125em X}}, Running {unhbox voidb@x hbox {Tkern -.1667emlower .424exhbox {E}hskip -.125em X}}, and Passing the Trip Test
	References
	Index

