
221

B Theory and Practice of CRCs

This section is devoted to the general theory and practice of CRCs. The problem
that we try to solve with the use of CRCs is the following: Given a long sequence
of bit, compute from it a short sequence of bit such that two short sequences are
different if they were computed from two different long sequences. The solution of
this problem can be used to check a long sequence of bit for transmission errors
simply by comparing two short sequences, one computed before the transmission and
one after. But, of course, this problem has no solution since there are many more long
sequences than short sequences, and hence, not all long sequences can be mapped to
different short sequences. So we have to modify the problem in order to solve it. We
can not really expect to be able to detect any kind of transmission error with only
the very limited information provided by a short sequence of check bit. But we can
reasonably expect to be able to find at least the most common errors, and the most
common errors are small errors. Therefore we have the new problem: Given a long
sequence of bit, compute from it a short sequence of bit such that two short sequences
are different if they are computed from two long sequences that differ only by a few
bit.

This is a rather difficult problem because of its combinatory complexity. Even if we
consider only two single bit errors, there are already many, many different possibilities
how these two errors can occur, for example in the 38 protected byte of a version 1,
layer III frame. Hence, without some mathematical theory, there is no way of deriving
a solution. The theory, we will use, is the theory of polynoms over the Field of the
two numbers 0 and 1.

B.1 Fields and Rings

When we do computations with numbers like 1, −3, 1
7 , or 3.1415, we use certain rules

of computation, like a+b = b+a, a ·1 = a, or a+(−a) = 0. The complete set of rules
does not matter for our informal discussion here, but a good book on algebra (e.g.
the timeless classic [32] or [13]) is recommended for those with a deeper interest in the
subject. Sets of numbers that fulfill these rules are called Fields. For example, the
set of real numbers is such a Field. It might come as a surprise that there are small
finite sets of numbers that satisfy all the normal rules of computation and therefore
are Fields.

To further investigate the topic, think, for example, about the numbers from 1 to 12,
as we use them for the 12 hours on a clock. We can do all the normal computations
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on these because we restart with 1 each time a number gets bigger than 12. For
example, 10 plus 4 is 2 o’clock. Multiples of 12 hours do not matter in regard to
the hour shown on a clock and are neglected. We only care for the remainder after
discarding any multiples of 12, and two numbers are considered equal if they differ
only by a multiple of 12. The number 12 itself is like 0. Mathematically we say: we
compute “modulo 12”.

But, do we have negative numbers? Look at the equation 10+4 = 2 that we stated
above. In this equation, the number 4 behaves like −8. Instead of going 8 hours
backward, we can always go 4 hours forward and the clock will show he same time.
It is easy to see that for each number on the clock there is also the negative number
present.

How about fractions? Is there a number like 1
5 with the property 5 · 1

5 = 1? In
this case the answer is yes. We have 5 · 5 = 25 = 12 + 12 + 1 = 1, and the number
5 takes the role of 1

5 . We should not expect to find a number for 1
12 since 12 = 0

and there is no such thing as 1
0 . There is, however, also no number for 1

2 . Whatever
number a we choose, 2 ∗ a will always be an even number and it can never be 1 or a
multiple of 12 plus 1 which is always an odd number. We conclude that the numbers
modulo 12 are not a Field; they constitute what mathematicians call a Ring. A Ring
is an algebraic structure, where we can do addition, subtraction, and multiplication as
usual, but division is limited. Division might leave a remainder. The whole numbers,
for example, constitute a Ring. A deeper investigation reveals, that the whole numbers
modulo n constitute a Field, if and only if n is a prime number. The numbers modulo
2 constitute the simplest and smallest Field. It is called G2 and consists only of the
two numbers 0 and 1, which we can also interpret as the boolean values “false” and
“true”. Multiplication and addition can then be written as ∧ (and) and ⊕ (exclusive
or), because the rules of computation are the same for these operations.

The Field G2 offers us a new mathematical model for sequences of bit: bit vectors.
So far we have seen vectors only as vectors of real numbers, but now, we know that
the boolean values 0 and 1 obey the same rules of computation as the real numbers,
and we can easily reuse the theory of vectors for vectors of booleans, or in general
vectors over an arbitrary Field. Unfortunately linear algebra is not sufficient for the
theory of CRCs, and we have to go one step further. We have to consider polynoms.

B.2 Polynom Rings

A polynom p over the variable x is an expressions of the form

p = anx
n + an−1x

n−1 + · · ·+ a1x
1 + a0x

0.

The numbers an, an−1, . . . , a1, a0 are taken from a fixed but otherwise arbitrary Field
and are called “coefficients”. If an 6= 0 we call n the degree of the polynom. Most
people know polynoms like x2−2x+1 from school. Here, we consider polynoms with
coefficients from the Field G2.

Since polynoms are added component wise and multiplication by numbers from
the Field is again component wise, we know that polynoms form a vector space. The
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polynom above can be equally well written as the vector (an, an−1, . . .+a1, a0). There
is, however, much more we can do with a polynom: We can multiply polynoms, and
we can evaluate polynoms for any value of x taken from the Field. We can even divide
one polynom by another, but usually this leaves a remainder, and hence polynoms
are not a Field, but a Ring.

The Ring of polynoms over the Field G2 is the right algebraic model to use if
we want to study CRCs. A sequence of bit like 101101 is modeled by the polynom
1x5 + 0x4 + 1x3 + 1x2 + 0x1 + 1x0 which we can write shorter as x5 + x3 + x2 + 1.

The CRC of a bit sequence is defined using a so called generator polynom. In the
case of MPEG streams this generator polynom is

g = x16 + x15 + x2 + 1.

The definition of the CRC for a bit sequence is now very simple: We take the polynom
p that belongs to the given bit sequence, divide it by g, and obtain a remainder. The
bit sequence that corresponds to this remainder is the CRC.

This definition of the CRC is a clever move: it yields a code that can be computed
efficiently in hardware and in software, as we will see below, and lends itself to a
thorough investigation of the properties of such a code.

B.3 Properties

Without too much mathematics, we can derive some of the properties of CRCs with
simple means. More elaborate techniques can be found in the classic CRC paper [26]
or in a books like [31] and [20].

Assume a polynom p and a polynom p̃ 6= p, which differ by some bit caused by
a transmission error. We investigate the question: Under what circumstances will
that error pass by undetected, that is, under what circumstances will both polynoms
have the same remainder when divided by the generator polynom g? We can write
p = qg + r and p̃ = q̃g + r̃, for suitable factors q and q̃ and remainders r and
r̃. If both polynoms yield the same CRC, we have r = r̃ and we can conclude
p− p̃ = (qg + r)− (q̃g + r̃) = (q − q̃)g + (r − r̃) = (q − q̃)g.

The last equation states the first important property of CRCs:

Property 1: Two bit sequences yield the same CRC, if and only if the difference of
the two sequences is a multiple of the generator polynom g.

Now we apply this to the case of a single bit error. The situation is as follows:

↓
p . . . 011010101 . . .
−p̃ − . . . 011000101 . . .

p− p̃ . . . 000010000 . . .

Subtracting p̃ from p will zero out all the coefficients, except at the position
(indicated by the arrow) where the two bit sequences differ. So we have p − p̃ = xk

where k is the position of the bit error, and we have reduced our investigation
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to the simple mathematical question: is xk a multiple of g. In our case, where
g = x16 + x15 + x2 + 1, the answer is: No. The only factors of xk are 1, x, x2, . . . , xk

and nothing else. We conclude:

Property 2: Any generator polynom g with more than one term can detect any
single bit error.

How about two error bit? Can one error bit cancel out the effect of the other error
bit on the CRC? If p and p̃ differ by two bit, we have p− p̃ = xk + x`, where k and `
are the positions of the error bit. Then the equation xk + x` = (xk−` + 1) · x` reveals
that the two errors will go by undetected, if g either divides xk−` + 1 or x`. If we
exclude, as above, the second possibility, we can conclude that two single bit errors
will remain undetected if the distance d = k − ` between the two error bit is such
that xd + 1 is a multiple of g. One idea to determine the smallest such d would be
to try successively d = 1, 2, 3, . . ., compute the remainder, and see whether it is 0.
Unfortunately, this would take a long long time. Some more mathematics—learning
it will take some time too, but is a lot more fun—reveals that our g has two factors,
g = (x + 1)(x15 + x14 + x + 1), of which the second factor x15 + x14 + x + 1 is a so
called primitive polynom. Primitive polynoms have a nice property: for them, the
smallest d such that xd +1 is a multiple of the primitive polynom is d = 2n−1, where
n is the degree of the primitive polynom. And this is as good as it can get, because
for all polynoms of degree n, the minimal d is a factor of 2n − 1 and hence can not
be larger.

Property 3: If the generator polynom g is a primitive polynom of degree n, it can
detect two single bit errors as long as the distance between the two errors is less than
2n − 1.

In our case, the smallest d such that xd + 1 is a multiple of x15 + x14 + x + 1 is
d = 215 − 1 = 32767. As long as the distance of the two single bit errors is less than
32767 bit (≈ 4 kbyte), our CRC will detect them. Since an MPEG audio frame easily
fits into 4 kbyte, the CRC guards them against two single bit errors.

How about three error bit? A general method, used often with polynoms, can help
us to gain clarity. If we have xk + x` + xj = hg, we can evaluate the polynoms
on both sides of the equation for the same value x and get the same result. If we
evaluate both sides for the value x = 1, we have: 1k + 1` + 1j = 1 + 1 + 1 = 1 and
h(1) · g(1) = h(1) · (116 + 115 + 12 + 1) = h(1) · (1 + 1 + 1 + 1) = h(1) · 0 = 0. And
we conclude, that the two sides must be different for any polynom h. So all three bit
errors are detectable and in general all errors with an odd number of error bit are
detectable.

Property 4: If the generator polynom g has an even number of terms, it can detect
any odd number of bit errors.

How about four or more bit? Don’t expect too much. Since the error pattern
1 1000 0000 0000 0101 corresponds exactly to the generator polynom x16+x15+x2+x,
it is obviously a multiple of g and we have a simple example of a four bit error that
can not be detected. On the other hand, any error pattern that is shorter than this is
represented by a polynom of degree 15 or less and therefore can not be a multiple of



B.3 Properties 225

g, since multiplying with a polynom (except with the polynom x0 = 1) will increase
the degree. So our CRC will detect all error pattern that are confined within 16 bit
(or 2 consecutive byte) and the only undetectable error pattern of length 17 is g itself.

Property 5: If the generator polynom g has degree n, it can detect any burst of
error bit that is confined to a single stretch of no more then n bit. The only burst
error pattern of length n+1 that can not be detected is the generator polynom itself.

If our error pattern is spread out more than 17 bit, some pattern, but not very
many, are undetectable.

Property 6: If the generator polynom g has degree n, it will fail to detect a burst
of error bit longer than n+ 1 bit with a likelihood of only 2−n.

For our generator polynom of degree 16, the fraction of undetectable error patterns
is exactly 1/216 or 0.0015 %.

Now that we have seen, that our CRC provides the best error protection that we
can buy with only 16 bit, we study how to compute it efficiently.

B.4 Bit Wise Computation

To compute the CRC, we have to divide the polynom p representing the given bit
sequence by g, the generator polynom, and take the remainder. As we do when
we manually perform a division, we use an incremental algorithm. An example will
illustrate this: Assume we divide, using decimal numbers, 2301 by 19. How do we go
about it?

First, we look at the head of the number: 2 and decide how often 19 · · · will “fit
in” 20 · · ·. Once! So we subtract 19 from 20 and obtain the remainder 01 Actually,
we were subtracting 1900, a multiple of 19, from 2000 and get a remainder of 100.
But we don’t care about the thousands, hundreds, or · · ·, all we care about is that we
are now done with the thousands and continue with the hundreds. That is, we can
now shift the result 01 one place to the left and get 1, computing now in units of one
hundred, not one thousand. We consider the next digit 3 (hundred). Before we use it,
we add the remainder from the previous computation: 3+1 = 4 (hundred). Then the
algorithm repeats: We look at the 4 and decide how often 19 · · · will “fit in” 40 · · ·.
Two times! We subtract 38 and obtain the remainder 2. We add this remainder with
the next digit 2 + 0 = 2 (actually 20 + 00 = 20) and continue. We look at 2 and
decide that we should again subtract 19 from 20, and get the remainder 1. We add
the remainder 1 and the next digit 1, to give a total remainder of 2. We stop here,
since shifting is no longer possible because we have reached the end of the dividend.
2 is the final result.

With polynoms, we follow the same algorithm. Lets divide

1x5 + 0x4 + 0x3 + 1x2 + 0x+ 0 by 1x2 + 0x+ 1.

We consider the leading “digit” 1x5 and see that 1x2 + 0x + 1 will fit in x3 times.
This is simple, we just need to compare the two leading exponents. We subtract
(1x2 + 0x+ 1)x3 from 1x5 and get 0x5 + 0x4 + 1x3. Note that the highest exponent
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has disappeared. We shift, that is discard the 0x5, add 0x4, the next “digit” from the
dividend, to 0x4 + 1x3 and repeat. We look at 0x4 + 1x3 and see that no subtraction
is necessary. We shift again, add 0x3 (the next “digit”), and repeat. We have 1x3

and decide that we must subtract (1x2 + 0x + 1)x1. The result is: 0x3 + 0x2 + 1x.
We shift, add the next “digit”, and we have: 1x2 + 1x. A last time, we subtract
(1x2 +0x+1)x0 and get 0x2 +1x+1. Shifting is no longer possible and we stop here
with the remainder 1x+1. We were lucky so, that the dividend did not contain further
non zero coefficients for x1 and x0. Otherwise, we should have added them to the
final result. One way to avoid this unnecessary complication, is the multiplication of
the original polynom by xd−1, where d is the degree of the generator polynom, before
computing the remainder. This will ensure that the last d coefficients are always zero
and avoids the extra addition. The loop can then terminate exactly after dealing
with the last digit of the original polynom. The properties of the CRC do not change
through this modification. Like most applications, the MPEG standard uses the CRC
in this modified way.

Computing with polynoms and binary coefficients is even easier than computing
with decimal numbers. Whether the dividing polynom “fits in” is decided purely by
the leading coefficient. If it is 1, we subtract, otherwise, we don’t. We do not really
need to compute multiples either. We subtract once or not at all. As an intermediate
result, we need to carry along only one polynom, the remainder so far, and its degree
is always smaller than the degree of the generator polynom.

The algorithm to compute the (modified) CRC for a bit sequence of length n as
the remainder of the corresponding modified polynom is now as follows:

• Shift the variable crc , the remainder so far, one bit to the left..

• Align the next input bit with bit d of the crc , where d is the degree of the generator
polynom g, and add.

• Consider bit d, the most significant bit (msb ) of the sum.

• If it is 1, subtract the generator polynom from the sum otherwise leave it untouched.

• Repeat for all n bit.

〈 compute the CRC for n bit 438 〉 ≡ (438)

static unsigned short int
bitcrc(unsigned short int crc ,unsigned short int bit , int n)

{ bit = bit � (16− n);
while (n > 0)
{ unsigned short int msb = (bit ⊕ crc) & #8000;

crc = crc � 1;
bit = bit � 1;
if (msb ) crc = crc ⊕ #8005;
n−−;

}
return crc ;
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} Used in 439 and 440.

The given code uses some optimizations. We do not really need the sum of the shifted
crc and the next input bit. The addition affects only the msb (most significant bit)
and if it is not zero anyway, it will be zero after the subtraction. So all we need the
msb for is to decide about the subtraction. After the subtraction, the highest bit is
always zero and is shifted out in the next step. If we change the order of shifting and
subtraction, we do not need to compute this highest bit, and restrict the subtraction
to the lower bit. Hence it is sufficient to represent the generator polynom without the
leading coefficient as #8005.

We need this as auxiliar function,

〈 auxiliary functions 69 〉 +≡ (439)

〈 compute the CRC for n bit 438 〉
and for printing.

〈 printing prerequisites 130 〉 +≡ (440)

〈 compute the CRC for n bit 438 〉

B.5 Byte Wise Computation

For performance, we need a faster algorithm that operates on byte not on bit. The
algorithm presented here goes back to A. Perez[25]; good tutorials are [34] and [27].
We do not present, however, a general algorithm, but present a specialized solution
for the modified CRC with the generator polynom g = x16 + x15 + x2 + x. Looking
for an incremental algorithm that computes the modified CRC not bit for bit, but
one byte at a time, we have the following situation:

Assume we have a bit string, or polynom p, and we know already the modified CRC
for p, that is, we know r such that for some q, we have p · x16 = qg + r.

01010010 00 · · ·0 10111011
︸ ︷︷ ︸

p

00000000 00000000 = p · x16 = qg + r

To make the representation as byte and 16-bit words explicit, we use in this section
the variables p and q for bit sequences of arbitrary length, the variables r and s
for sequences of 16 bit (words) and the variables a, b, c, and d for sequences of 8
bit (byte). The remainder r, for instance, has a maximum degree of 15, and hence
fits into a 16-bit word. Because we will need byte wise access to r, we write r as
r = a · x8 + b, splitting it into a high-byte a and a low-byte b.

To continue with the problem at hand, we assume that we read in an other byte c
and want to know the modified CRC of the bit sequence obtained by appending c to
the end of p.

01010010 00 · · ·0 10111011
︸ ︷︷ ︸

p

10110011
︸ ︷︷ ︸

c

00000000 00000000 = (px8 + c)x16
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Now we use some elementary algebra to obtain

(px8 + c)x16 = px16x8 + cx16

= (qg + r)x8 + cx16

= qgx8 + rx8 + cx16

= qgx8 + (ax8 + b)x8 + cx16

= qgx8 + ax16 + bx8 + cx16

= qgx8 + (a+ c)x16 + bx8

If we now have a table to look up the modified CRC‘s for all possible byte values,
then we can look up in that table for a+ c a 16-bit value s such that

(a+ c)x16 = q′g + s

Using this equation, we can continue the above computation and have

(px8 + c)x16 = qgx8 + (a+ c)x16 + bx8

= qgx8 + q′g + s+ bx8

From the last line, we can read off the new modified CRC as s+ bx8. We summarize
the algorithm:

To compute the modified CRC of c appended to p, from the modified CRC r of p
alone,

• take the high-byte a of r and compute a+ c;

• look up the modified CRC s for the byte a+ c;

• take the low-byte b of r and shift it left by 8 bit to obtain bx8;

• and add bx8 to s.

This algorithm fits on a single line, taking the next byte c directly from the bit stream
as ∗byte pointer . In addition the byte pointer gets advanced to the next byte.

〈 compute the CRC for one byte 441 〉 ≡ (441)

crc = (crc � 8)⊕ crc table [(crc � 8)⊕ ∗byte pointer ++] Used in 100, 101, and 215.

The table, that contains all the modified CRCs for all byte from 0 to 255 is generated
using the bitcrc function.

〈 print element 132 〉 +≡ (442)

void crc8 (int i)
{ printf ("0x%04x", bitcrc(0, (unsigned short int) i, 8)); }

〈 print table 135 〉 +≡ (443)

print array ("static unsigned short const crc_table", 256, crc8 );


