3.3 Processor Architecture 13

a pipeline. Pipelining is the cheaper form of parallelism because expensive hardware,
like a floating point multiplier, is needed only once, and therefore, pipelining is found
in most general purpose processors. The regular flow of instructions through the
pipeline, however, comes to a halt, if the execution of an operation needs the result of
a previous operation that is still in the pipeline and has not yet progressed to a stage
where this result is already available. The instruction (and all that follow) is then
delayed until the required operand is computed. This situation is called a “pipeline
stall”. It is best avoided by scheduling a mix of unrelated instructions for execution.

Producing fast code is a very hard problem. It requires to find a balance between
contradicting requirements that depend very much on the target processor and its
facilities for caching and pipelining. This task is best left to the compiler that
generates the machine code and different compilers achieve different results.

We compare the GNU C compiler version 2.95.3[12], the Intel C Compiler version 7.0
[16], and the Optimizing Microsoft 32-Bit C/C-++ compiler version 12.00.8804 [23], as
well as four different implementations: The DCT used in mpg123 version pre0.59s[22],
the DCT used in mad version 0.14.2b[21], the DCT derived with spiral (not used),
and the CosDFT derived with spiral actually used with mp32pcm. In Table 10, the
run times are given in us. We postpone a complete discussion of performance until
section 3.6.

C Compiler mad mpg123 DCT CosDFT
GNU 0.84 1.47 1.09 1.13
Intel 0.62 0.43 0.31 0.31

Microsoft 0.71 0.79 0.56 0.49

Tab. 10: Run times in us for different implementations and compilers

3.4 Eliminating the Shifting

The vector v contains 16 blocks of 32 subband samples each. The shifting is needed
because the windowing step uses each of these blocks successively in all 16 positions
within v (Fig. 11). If we do not want to move the data, we can instead move the start
point of v inside a larger vector w (Fig. 12). Of course, we can not move the start
point indefinitely since the amount of memory available for w is limited. When we
reach the left end of w we have to start over at the right end and at this point, we
have to make a copy of v, which is now at the left end, because next it will be needed
at the right end of w (Fig. 13).

Increasing the storage by n blocks, therefore implies that we can skip the copying n
times before copying is necessary again. Any value of n > 0 is possible. With just one
block more, we can cut the amount of copying in half. Another good choice could be
16 additional blocks—doubling the amount of memory. This reduces the time spent
with copying quite drastically (to 1/16). For very different reasons—we want to keep
a certain amount of “historic” data from the stream—as explained in section A.1, we
choose to have n = 2 % 18 + 15 = 51.

14 3 Standard Synthesis Subband Filter

O] 1] - [15]

[0 [T -~ 5]
e o o

[0 [i1 - T[]

copy

Fig. 13: Copy the subbands and start over at the right end

(private declarations 1) = 1)
#define WINDOWBLOCKS 16

#define SHIFTBLOCKS (2 * BLOCKS + WINDOWBLOCKS — 1)

#define SHIFTSIZE (SHIFTBLOCKS x SUBBANDS)

#define CHANNELS 2 Used in 6, 7, and 130.
(stream data o) = 2)
double w[CHANNELS][SHIFTSIZE]; Used in 42.

Now instead of copying v each time, we need to copy it only every 36th time. The
shifting requires moving the beginning of v inside w. For this purpose, we store as
part of the (stream data 2) for each channel an offset that indicates the intended
start of v inside of w.

(stream data o) += 3)
int offset [CHANNELS];

3.4 Eliminating the Shifting 15

In each shifting step, the intended beginning of v moves to the left to make space
for new subband samples. If the offset becomes negative, we have to copy 16 — 1
blocks and start over 16 blocks left of the right end of w. This is the C code to
(shift vector v 4) = (4)

s—offset[ch] = s—offset[ch] — SUBBANDS;

if (s—offset[ch] < 0)

{ S—>0ﬁset[ch] = SHIFTSIZE — WINDOWBLOCKS * SUBBANDS;

memmove (& (s—w[ch][s— offset[ch] + SUBBANDS]), &(s—w|ch][0]),
sizeof (double) * (WINDOWBLOCKS — 1) « SUBBANDS);

}

v = s—w|ch] + s—offset[ch]; Used in 70, 75, and 408.
After that, v is shifted and ready to receive the next block of data.

3.5 The Core Algorithm

What remains, after the elimination of shifting, as the core of the algorithm is captured
by the functions dct32 and windowing.

(private declarations 1) += (5)
extern void windowing (const double v, mp3_sample *x);
extern void dct32(const double xy, double *v);

dct32 takes a vector y of scaled samples performs the (32 point CosDFT 411) on vy,
with the output ending up in vector v. The windowing function takes v and writes
output samples to vector x.

The code for the (32 point CosDFT 411) can be found in appendix A.2 and the
code to (apply windowing 412) is in appendix A.3.

Since the performance of the decoder depends largely on these two routines They
are written to a separate file, perform.c, to facilitate further optimization.

(perform.c ¢) = (6)
#include "mp32pcm.h"

(private declarations 1)

(conversion from double to mp3_sample ;35)

void windowing (const double xv, mp3_sample xx)
{ (apply windowing 412) }

void dct32 (const double xy, double xv)

{ (32 point CosDFT 411) }

3.6 Performance

After all these optimizations, we return to the question of performance. The distri-
bution of the runtime of mp32pcm is shown in Tab. 14. It is now dominated by the
windowing step, which inevitably requires about 500 additions and multiplications,
while the CosDF'T needs only a reasonable fraction of the overall time. The reading of
bit is only critical inside the main loop, where we read the subband samples. Decod-
ing the header or reading the bit allocation and scalefactor information contributes

16 3 Standard Synthesis Subband Filter

almost nothing to the overall runtime. Still, the reading of the subband samples is
surprisingly expensive, since apart from some bit manipulation and table lookup, only
a single multiplication is required per sample.

Activity Intel[16] GNU[12] References

read bit allocation 1% 1% see section 7.4
read scalefactors 1% 1% see section 7.9
read subband samples 15 % 25 % see section 7.6
CosDFT 25 % 30 % see appendix A.2
windowing 56 % 41 % see appendix A.3
rest 2% 2%

Tab. 14: Distribution of runtime for different compilers

In Tab. 15, the times are given in ms for running the different decoders on the
layer I file £11.mpg, provided with Part 4 of the standard[2].

mad[21] mpg123[22] mp32pcm mp32pcm

32 bit 16 bit
GNU[12] 5.83 ms 3.29 ms 3.11 ms 3.55 ms
Intel[16] 5.27 ms 3.23 ms 2.30 ms 2.70 ms
Microsoft[23] 6.02 ms 4.49 ms 4.39 ms 4.29 ms

Tab. 15: Run times in ms for different implementations and compilers

Some remarks may help to interpret this table:

e mad uses fixed point binary fractions with operations that can be implemented
through integer arithmetic and shifting. Different formats of these numbers can be
used to adjust the speed accuracy tradeoff. But even if optimized for speed, the
decoder runs slower than mpg123 or mp32pcm. Due to the extensive use of hand-
optimized code, the differences between various compilers are relatively small.

e mpgl23is commonly regarded as the fastest decoder available. Again there are var-
ious options to influence the speed/quality tradeoff. The influence of the compiler
on the speed is minor because critical parts (the DFT) are written in assembly
language.

e mp32pcm is slightly faster than mpg123 when compiled with the Intel compiler and
slower when compiled for 16 bit with the GNU compiler. The difference is due to
the faster code that the Intel compiler produces for CosDFT and windowing. For
this reason, the distribution of mp32pcm supplies the assembly output of the Intel
compiler for these parts (in file perform.s) as an alternative to the C sources (in
perform.c). If using the file perform.s, the GNU compiler will produce a decoder
as fast as the Intel compiler.

