
155

12 Huffman Coding

Huffman coding is a method to code a sequence of data items with the minimum
number of bit necessary. To see how this works, let us look at an example. Consider
the text “abbbaabaaabaaa”. It can be coded using the ASCII code (7 bit per
character) and requires then 14 · 7 = 98 bit. Alternatively, we can use ISO-8859
Code (8 bit per character) and will need 112 bit. If we care for the minimum amount
of bit, we can use a 0-bit for an “a” and a 1-bit for a “b” and get by with only 14 bit.

That was easy. But how about coding “abcdaabaaabaaa”? Now, we can no longer
use one bit per character, and we might consider using two bit per character.

Code Data

00 a

01 b

10 c

11 d

Tab. 80: Encoding 1

Code Data

0 a

10 b

110 c

111 d

Tab. 81: Encoding 2

Code Data

0 a

1 b

01 c

11 d

Tab. 82: Encoding 3

Encoding 1 brings us to 14 · 2 = 28 bit. This, however is not optimal. If we choose
encoding 2, we need only 21 bit (9 bit for 9 “a”, 6 bit for 3 “b”, 3 bit for 1 “c”, and
3 bit for 1 “d”). This is a saving of 25 % compared to encoding 1.

The principle is simple. For codes that occur more often, we use short bit sequences
and for codes that occur infrequently, we use longer bit sequences. The extra spending
for a few long codes is easily recovered with many short codes.

But may be there are still better codings. For instance, we could use encoding 3.
This would require a total of only 9 · 1 + 3 · 1 + 1 · 2 + 1 · 2 = 16 bit. Unfortunately, it
won’t work. We can encode the text to yield “0101110010001000”, and it is only 16
bit long, but we can no longer decode it unambiguously. We could take the leading
“01” either for an “ab” or for a “c”. Similar for the next two bit. And how should
we know that in the first case it is “ab” and in the second “c”?

Let us return to encoding 2, which yields “010110111001000010000”, and study
the decoding process in detail. We start reading a 0-bit. How can we know that this
is an “a” and not the start of a longer code for a different character? Simple: all the
other codes start with a 1. So it’s an “a”. We read the second bit: 1. Obviously,



156 12 Huffman Coding

this is not an “a”. It is not a code for any character. So we read on and get an other
0-bit. This is a “b”. How do we know? The reason is as before: There is no other
code that starts with “10”. In summary: to make unambiguous decoding feasible, no
code must be the prefix of an other code.

Codes that have this prefix property can
be depicted as binary decision trees. En-
coding 2 is shown in Fig. 83 as a binary
tree.

Each code describes a path from the
root of the tree to a leaf node. A 0-
bit selects the branch to the right, a 1-
bit selects a branch to the left. Once we
arrive at a leaf node, we have found the
correct decoded character.

Back to the question of an optimal en-
coding that allows unambiguous decod-
ing. This is the problem for which Huff-
man coding is the answer[15]. We omit
the details here and recommend reading
a good book on algorithms (for example
[33] pages 351–357) instead.

d c

b

a

1

1

1 0

0

0

Fig. 83: Huffman tree for encoding 2

In our case, the encodings are given by the standard and we just have to use them.
We better focus our curiosity on the problem of optimal decoding of a given encoding.

Naturally, it is possible to choose a representation of the binary Huffman tree and
decode a bit stream by traversing the tree. Each time we encounter a leaf node,
we emit the corresponding character and start over from the root of the tree. The
runtime of this algorithm is proportional to the number of bit in the bit stream, and
this is not bad. Since the most frequent characters will have short codes, they can be
decoded very fast.

An alternative is decoding with a lookup table. The index, we want to use is the
Huffman code, and the result is the corresponding character. Our Huffman codes are,
however, of variable length, and we do not even know the exact length before we have
decoded them. We solve this problem, by taking a bit string of maximum code length
from the input and use it as an index. For a short code this means that there must
be many different entries in our table, one for every possible extension of the code up
to the maximum code length.

For encoding 2, the required table is shown in Tab. 84. Observe, that the character
“a” requires four entries in the table. If the index starts with a 0-bit, it must lead to
the character “a”, whatever the next two bit of the index happen to be.

The bit stream “010110111001000010000”, which we used above as an example,
starts with “010”. We use it as an index to find the first character “a” and the length
of the code: 1 bit. We advance the input by one bit and take the next three bit:
“101”. Using these as an index, we obtain the “b” and its code length: 2.

The use of the lookup table will yield a faster algorithm but requires more memory.



12 Huffman Coding 157

Index Index (binary) Code Bit required

0 000 a 1

1 001 a 1

2 010 a 1

3 011 a 1

4 100 b 2

5 101 b 2

6 110 c 3

7 111 d 3

Tab. 84: Lookup table for encoding 2

The runtime of the algorithm is now proportional to the number of decoded characters,
and all the characters are decoded with the same speed. The space requirements for
the tables will grow exponentially with the maximum code length. The maximum
code length used in the encodings of the standard is 19, and this would require a
table with approximately a half a million entries—too much space wasted for a few
very long codes that are not used very often.

Hence, we combine the two approaches. We restrict the lookup tables to a fixed
maximum number of bit, HWIDTH, to be used for the index. If this number of bit is
enough to decode the character, that is if its code length is less or equal to HWIDTH,
the table will immediately reveal the character and its code length. If the code length
is greater than HWIDTH, the table will provide a pointer to a new table, called an
extension table, and the number of bit required for the index of the extension table.
In effect, we replace the binary tree by an n-way tree, where n = 2HWIDTH is the table
size. It provides access to the most common codes with a single table lookup and, for
longer codes, has a runtime proportional to the code length.

HWIDTH Table Entries

1 2726

2 2172

3 2084

4 2176

5 2398

6 2950

7 3746

8 5486

Tab. 85: Total memory usage

HWIDTH Max. Lookups Runtime

1 19 100 %

2 10 75.4 %

3 7 61.7 %

4 5 56.5 %

5 4 53.6 %

6 4 51.2 %

7 3 50.5 %

8 3 49.2 %

Tab. 86: Time requirements for encoding 15

The choice of HWIDTH depends on the time/space tradeoff we are willing to make.


